pH-dependent ion- transport mechanism in the hfRPE
hfRPE 中 pH 依赖性离子传输机制
基本信息
- 批准号:8149180
- 负责人:
- 金额:$ 26.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The photoreceptor is the most metabolically active neuronal cell in the human body; oxygen consumption at the inner segment of the photoreceptors increases upon dark adaptation, mainly because of the increased ATP requirements needed to maintain the dark current. Since the oxygen consumption at the inner segment of the photoreceptor increases approximately 1.5-3 times upon dark adaptation, we expect a proportionate increase in CO2 generation and the subsequent increase in CO2 at the subretinal space. The accumulation of CO2 within the subretinal space (SRS) causes acidosis which is detrimental to the health of surrounding cells (i.e., Muller cells, photoreceptors, and RPE), thus metabolic CO2 must be quickly dissipated from the SRS. We hypothesize that a large fraction of this CO2 load is dissipated by diffusion to the choroidal blood supply, and that this process is mediated by the RPE. In this study, we describe the transport of CO2 across the RPE, which involves multiple ion-transport mechanisms that consequently increase fluid-absorption across the RPE.
This project entails the study of the ion-transport proteins in the hfRPE that are involved in light-dark transition in the eye. First, we show that CO2 flux across the apical membrane is higher compared to CO2 flux across the basolateral membrane. We investigated the possibility that CO2-flux across the apical membrane is mediated by aquaporin 1, which has high mRNA expression levels in the hfRPE cultures and is found at apical membrane of the rat RPE. However, pH-imaging experiments showed that this was not the case in the hfRPE. We investigated to see if the difference in apical and basolateral membrane CO2 flux is caused by the difference in total exposed surface area in the RPE (the apical membrane has approximately 3-10 times larger surface area than the basolateral membrane). An experiment that involves weakening the tight junction to allow CO2 to extend further to the apical membrane supported this hypothesis.
AE2 activity is reduced when the apical bath is perfused with Ringers equilibrated with 13% CO2 because AE2 is known to be inhibited under acidic conditions. Since, a CO2 load at the apical membrane necessitates an increased HCO3 transport across the basal membrane. We present pH-imaging and electrophysiology data to confirm the presence of an electrogenic Na+/HCO3- co-transporter (NBC) at the basal membrane of the RPE: (1) reducing HCO3o at the basal bath caused a TEP-rise that corresponds to the depolarization of the basal membrane, (2) the TEP-rise was DIDS-sensitive, (3) the TEP-rise was absent in zero-Na conditions. Therefore, this basal Na/HCO3 co-transporter may mediate HCO3 efflux at the basolateral membrane. With electrophysiology experiments, we also show that increasing apical CO2 from 5% to 13% increases basal NBC activity, while decreasing CO2 load at the apical membrane (from 5% to 1%) inhibited basal NBC activity. Since the conversion of CO2 to HCO3 is catalyzed by carbonic anhydrase II, we did an experiment to show that basolateral membrane Na/HCO3 co-transporter activity is inhibited by a potent carbonic anhydrase inhibitor (dorzolamide).
Although the basal Na/HCO3 co-transporter activity was dependent on CO2 load at the apical membrane, how much of HCO3 is supplied by CO2-HCO3 conversion? With TEP-recordings, we show that basolateral co-transporter activity was partially inhibited when the apical pNBC1 was blocked with DIDS. This suggests that the apical Na/HCO3 co-transporter (pNBC1) provides part of the HCO3-supply necessary for basal Na/HCO3 co-transporter activity. We also showed that the main substrate for the basolateral Na/HCO3 co-transporter is HCO3; inhibiting apical Na-transport pathways such as the Na/K ATPase, Na/K/2Cl co-transporter, and Na/H exchanger did not affect basolateral Na/HCO3 co-transport activity.
We showed that CO2 affects multiple ion-transporters that ultimately increases net Na, Cl, and HCO3 absorption across the RPE. Since fluid flows with an osmotic gradient, the increase in solute transport would enhance the steady-state fluid absorption across the RPE. The CO2-induced increase in fluid-absorption may have an important physiological role because the rate of metabolic water production at the retina (as calculated based on the geometry and oxygen consumption rate of the retina) is approximately 10% of the steady state fluid absorption across the human RPE. Therefore failure to remove water from the subretinal space can potentially cause retinal detachment.
感光细胞是人体内代谢最活跃的神经细胞;光感受器内段的耗氧量在暗适应时增加,主要是因为维持暗电流所需的 ATP 需求增加。 由于暗适应时感光器内段的耗氧量增加约 1.5-3 倍,因此我们预计 CO2 的生成量会成比例增加,随后视网膜下腔的 CO2 也会相应增加。 CO2 在视网膜下腔 (SRS) 内的积累会导致酸中毒,这不利于周围细胞(即 Muller 细胞、光感受器和 RPE)的健康,因此代谢 CO2 必须快速从 SRS 中消散。 我们假设大部分二氧化碳负荷通过扩散到脉络膜血液供应而消散,并且该过程是由 RPE 介导的。 在这项研究中,我们描述了 CO2 穿过 RPE 的传输,其中涉及多种离子传输机制,从而增加了 RPE 上的液体吸收。
该项目需要研究 hfRPE 中参与眼睛明暗转变的离子传输蛋白。 首先,我们发现穿过顶膜的 CO2 通量高于穿过基底外侧膜的 CO2 通量。 我们研究了跨顶膜的 CO2 通量是由水通道蛋白 1 介导的可能性,水通道蛋白 1 在 hfRPE 培养物中具有高 mRNA 表达水平,并且在大鼠 RPE 的顶膜中发现。 然而,pH 成像实验表明 hfRPE 的情况并非如此。 我们研究了顶膜和基底外侧膜 CO2 通量的差异是否是由 RPE 中总暴露表面积的差异引起的(顶膜的表面积大约是基底外侧膜的 3-10 倍)。 一项涉及削弱紧密连接以允许二氧化碳进一步延伸到顶膜的实验支持了这一假设。
当根尖浴灌注用 13% CO2 平衡的林格氏液时,AE2 活性会降低,因为已知 AE2 在酸性条件下会受到抑制。 因为,顶膜上的 CO2 负荷需要增加穿过基底膜的 HCO3 运输。 我们提供 pH 成像和电生理学数据,以确认 RPE 基底膜上存在生电 Na+/HCO3- 协同转运蛋白 (NBC):(1) 在基底浴中还原 HCO3o 导致 TEP 上升,对应于基底膜去极化,(2) TEP 上升是 DIDS 敏感的,(3) TEP 上升在 RPE 基底膜上不存在。 零钠条件。 因此,这种基础 Na/HCO3 协同转运蛋白可能介导 HCO3 在基底外侧膜的流出。 通过电生理学实验,我们还表明,将顶膜 CO2 浓度从 5% 增加到 13% 会增加基础 NBC 活性,而降低顶膜 CO2 负荷(从 5% 到 1%)会抑制基础 NBC 活性。 由于 CO2 转化为 HCO3 是由碳酸酐酶 II 催化的,因此我们进行了一项实验,证明基底外侧膜 Na/HCO3 协同转运蛋白活性受到有效的碳酸酐酶抑制剂(多佐胺)的抑制。
尽管基础 Na/HCO3 协同转运蛋白活性取决于顶膜上的 CO2 负载,但有多少 HCO3 是由 CO2-HCO3 转化提供的? 通过 TEP 记录,我们发现当顶端 pNBC1 用 DIDS 阻断时,基底外侧协同转运蛋白活性受到部分抑制。 这表明顶端 Na/HCO3 协同转运蛋白 (pNBC1) 提供了基础 Na/HCO3 协同转运蛋白活性所需的部分 HCO3 供应。 我们还表明基底外侧 Na/HCO3 协同转运蛋白的主要底物是 HCO3;抑制顶端 Na 转运途径(例如 Na/K ATP 酶、Na/K/2Cl 协同转运蛋白和 Na/H 交换器)不会影响基底外侧 Na/HCO3 协同转运活性。
我们发现,CO2 会影响多种离子转运蛋白,最终增加 RPE 上的 Na、Cl 和 HCO3 净吸收。 由于流体以渗透梯度流动,溶质转运的增加将增强 RPE 上的稳态流体吸收。 CO2 引起的液体吸收增加可能具有重要的生理作用,因为视网膜处的代谢水产生率(根据视网膜的几何形状和耗氧率计算)约为人类 RPE 稳态液体吸收的 10%。 因此,未能清除视网膜下腔的水分可能会导致视网膜脱离。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CO2-induced ion and fluid transport in human retinal pigment epithelium.
- DOI:10.1085/jgp.200810169
- 发表时间:2009-06
- 期刊:
- 影响因子:0
- 作者:Adijanto J;Banzon T;Jalickee S;Wang NS;Miller SS
- 通讯作者:Miller SS
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheldon Miller其他文献
Sheldon Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheldon Miller', 18)}}的其他基金
The treatment of uveitic cystoid macular edema with topical Interferon gamma
局部干扰素γ治疗葡萄膜炎性黄斑囊样水肿
- 批准号:
7968430 - 财政年份:
- 资助金额:
$ 26.53万 - 项目类别:
Human Retinal Pigment Epithelial Cell Cultures: Physiology & Fluid Transport
人视网膜色素上皮细胞培养:生理学
- 批准号:
7968352 - 财政年份:
- 资助金额:
$ 26.53万 - 项目类别:
Biological function microRNAs enriched in RPE: in vitro and in vivo models
RPE 中富集的生物学功能 microRNA:体外和体内模型
- 批准号:
7968404 - 财政年份:
- 资助金额:
$ 26.53万 - 项目类别:
Protective effects of neurotrophic factors on RPE physiology
神经营养因子对 RPE 生理的保护作用
- 批准号:
7968410 - 财政年份:
- 资助金额:
$ 26.53万 - 项目类别:
AG13764 and AG13711 Reverses VEGF-Induced Choroidal Neovascularization in Rat Eye
AG13764 和 AG13711 逆转 VEGF 诱导的大鼠眼脉络膜新生血管形成
- 批准号:
7968355 - 财政年份:
- 资助金额:
$ 26.53万 - 项目类别:
Lactate transport and pH-regulation in the human RPE
人类 RPE 中的乳酸转运和 pH 调节
- 批准号:
7734651 - 财政年份:
- 资助金额:
$ 26.53万 - 项目类别:
相似国自然基金
车载中央计算平台软件框架及泊车功能研发与产业化应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
低空飞行器及其空域的设计与监管平台软件
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于金刚石高效散热封装的高功率高压GaN器件研发与产业化
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
新能源智能汽车高性能精密零部件装备研制与产业化
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
高效智能化超低风速风电机组关键技术及装备研制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
绿氢制储加注关键技术与装备研发
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
复杂电子产品超精密加工及检测关键技术研究与应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
抗消化性溃疡新药研发
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于合成生物学的动物底盘品种优化及中试应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
1.1 类中药创新药“鱼酱排毒合剂”开发
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Spatial Transcriptomic of Wheat Grain for ion transport (TranScripION)
小麦籽粒离子传输空间转录组学 (TranScripION)
- 批准号:
EP/Z000726/1 - 财政年份:2025
- 资助金额:
$ 26.53万 - 项目类别:
Fellowship
Amplifying Ion Transport at the Interfaces of Solid-State Batteries
增强固态电池界面的离子传输
- 批准号:
EP/Z000254/1 - 财政年份:2024
- 资助金额:
$ 26.53万 - 项目类别:
Research Grant
CAREER: Harnessing Dynamic Dipoles for Solid-State Ion Transport
职业:利用动态偶极子进行固态离子传输
- 批准号:
2339634 - 财政年份:2024
- 资助金额:
$ 26.53万 - 项目类别:
Continuing Grant
Ion transport in solid electrolyte interphases
固体电解质界面中的离子传输
- 批准号:
2887685 - 财政年份:2023
- 资助金额:
$ 26.53万 - 项目类别:
Studentship
Theoretical study of ion transport in ZIP8 protein based on statistical mechanics theory of liquids
基于液体统计力学理论的ZIP8蛋白离子输运理论研究
- 批准号:
23K19236 - 财政年份:2023
- 资助金额:
$ 26.53万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Engineering Fuel Cell Electrodes to Overcome Ion Transport Limitations using Low-cost, Efficient Lignin-based Ionomers
使用低成本、高效的木质素离聚物设计燃料电池电极以克服离子传输限制
- 批准号:
2310185 - 财政年份:2023
- 资助金额:
$ 26.53万 - 项目类别:
Standard Grant
NSF-BSF: Multi-ion Transport, Rotation, and Turbulence in Hydrodynamic Compression of Z-pinch
NSF-BSF:Z 箍缩流体动力压缩中的多离子输运、旋转和湍流
- 批准号:
2308829 - 财政年份:2023
- 资助金额:
$ 26.53万 - 项目类别:
Continuing Grant
Resolving CO2 regulation of the SLAC1 Cl- channel in guard cell ion transport and photosynthetic carbon assimilation
解决保卫细胞离子传输和光合碳同化中 SLAC1 Cl-通道的 CO2 调节
- 批准号:
BB/W001217/1 - 财政年份:2022
- 资助金额:
$ 26.53万 - 项目类别:
Research Grant
Cellular and molecular mechanisms of ion transport by the insect excretory system
昆虫排泄系统离子运输的细胞和分子机制
- 批准号:
RGPIN-2021-03575 - 财政年份:2022
- 资助金额:
$ 26.53万 - 项目类别:
Discovery Grants Program - Individual
NSF-BSF: Ion transport and selectivity in salt-rejecting membranes operating at elevated salinities and pressures
NSF-BSF:在高盐度和压力下运行的脱盐膜中的离子传输和选择性
- 批准号:
2136835 - 财政年份:2022
- 资助金额:
$ 26.53万 - 项目类别:
Standard Grant














{{item.name}}会员




