Genes and signals controlling mammalian hematopoiesis.

控制哺乳动物造血的基因和信号。

基本信息

项目摘要

Our studies are focused in three areas. The first involves characterization of the role of T cell antigen receptor (TCR) signals, and in particular, individual TCR signal transducing subunits and signal transducing motifs in T cell development. Second, we have extended our studies to include analysis of signal transducing molecules that function downstream of the TCR or that inhibit TCR signaling. The aim of these studies is to understand how these molecules participate in TCR mediated signaling and to determine what roles they and the signaling pathways they regulate play in T cell maturation and T cell activation. Finally, the lab has initiated a new area of investigation of the genes controlling the generation and maintenance of Hematopoietic Stem Cells. Role of T cell antigen receptor (TCR) signaling in thymocyte development. Signal transduction sequences (termed Immunoreceptor Tyrosine-based Activation Motifs; ITAMs) are contained within four distinct subunits of the multimeric TCR complex (zeta, CD3-gamma, -delta, -epsilon). Di-tyrosine residues within ITAMs are phosphorylated upon TCR engagement and function to recruit signaling molecules, such as protein tyrosine kinases, to the TCR complex, thereby initiating the T cell activation cascade. To determine if TCR signal transducing subunits perform distinct or analogous functions in development, we previously generated zeta deficient and CD3-epsilon deficient mice by gene targeting, genetically reconstituted these mice with transgenes encoding wild-type or signaling-deficient (ITAM-mutant) forms of zeta and CD3-epsilon, and characterized the developmental and functional consequences of these alterations on TCR signaling. The results of these studies demonstrated that TCR-ITAMs are functionally equivalent but act in concert to amplify TCR signals. TCR signal amplification was found to be critical for thymocyte selection, the process by which potentially useful immature T cells are instructed to survive and differentiate further-(positive selection), and potentially auto-reactive cells that may cause auto-immune disease are deleted in the thymus (negative selection). Thus, the multi-subunit structure of the TCR may have evolved to enable complex organisms to develop a broad, self-restricted yet auto-tolerant T cell repertoire. In current studies we are using conditional gene expression systems to analyze the importance of TCR signaling at specific stages of development. In addition, we are using microarray and subtractive cloning to identify genes involved in T cell signaling and T cell development. Signaling molecules that function downstream of the TCR or that function to "fine-tune" the TCR signal. Our results with TCR-ITAM mutant mice suggested that other signaling molecules can compensate for the reduction in TCR signal strength. An initial FACS-based search for candidate compensatory molecules led us to CD5, a TCR associated trans-membrane protein that inhibits TCR signaling. Importantly, we found that CD5 surface expression is regulated by and parallels TCR signal intensity. Thus, rather than simply functioning as a co-receptor, CD5 acts to fine-tune TCR signals during thymocyte selection since its level of surface expression depends upon the intensity of TCR signaling. An obvious benefit of such fine-tuning of the TCR signaling response would be to enable the generation of a T cell repertoire with the maximum possible diversity since it would allow a broader range of TCRs to pass through the signaling window of positive selection. Since little was known about how CD5 regulates TCR signaling, we initiated a project to characterize CD5 function, both genetically and biochemically. The results of these experiments suggest a mechanism for CD5 mediated TCR signal inhibition that we are currently testing experimentally. We have also identified a novel T-lineage restricted putative adaptor protein, provisionally named TLAP. Biochemical studies conducted in the interim indicate that TLAP functions in the TCR signaling pathway. TLAP-/- mice have been generated and their phenotype reveals an important role for this protein in thymocyte development. Current and projected experiments are directed at elucidating the function of TLAP in T cell signaling and development. Genes controlling Hematopoietic Stem cell specification and maintenance. The hematopoietic system is composed of a functionally diverse group of cells that originate from a common hematopoietic stem cell (HSC) capable of long-term self-renewal and multi-lineage differentiation. Self-renewal ensures that a pool of HSCs persists throughout life, whereas differentiation leads to the continuous generation of all circulating blood cells including lymphocytes, myeloid cells, erythrocytes and platelets. We have recently initiated experiments aimed at identifying genes important for HSC generation and maintenance. Our initial studies focused on the role of LIM domain binding protein-1 (Ldb1) in hematopoiesis. The results of these experiments revealed a critical function for Ldb1 in regulating the self-renewal/differentiation cell fate decision in hematopoietic stem cells and suggest further that Ldb1 nucleated transcription complexes may control maintenance of lineage specific stem cells.
Our studies are focused in three areas. The first involves characterization of the role of T cell antigen receptor (TCR) signals, and in particular, individual TCR signal transducing subunits and signal transducing motifs in T cell development. Second, we have extended our studies to include analysis of signal transducing molecules that function downstream of the TCR or that inhibit TCR signaling. The aim of these studies is to understand how these molecules participate in TCR mediated signaling and to determine what roles they and the signaling pathways they regulate play in T cell maturation and T cell activation. Finally, the lab has initiated a new area of investigation of the genes controlling the generation and maintenance of Hematopoietic Stem Cells. Role of T cell antigen receptor (TCR) signaling in thymocyte development. Signal transduction sequences (termed Immunoreceptor Tyrosine-based Activation Motifs; ITAMs) are contained within four distinct subunits of the multimeric TCR complex (zeta, CD3-gamma, -delta, -epsilon). Di-tyrosine residues within ITAMs are phosphorylated upon TCR engagement and function to recruit signaling molecules, such as protein tyrosine kinases, to the TCR complex, thereby initiating the T cell activation cascade. To determine if TCR signal transducing subunits perform distinct or analogous functions in development, we previously generated zeta deficient and CD3-epsilon deficient mice by gene targeting, genetically reconstituted these mice with transgenes encoding wild-type or signaling-deficient (ITAM-mutant) forms of zeta and CD3-epsilon, and characterized the developmental and functional consequences of these alterations on TCR signaling. The results of these studies demonstrated that TCR-ITAMs are functionally equivalent but act in concert to amplify TCR signals. TCR signal amplification was found to be critical for thymocyte selection, the process by which potentially useful immature T cells are instructed to survive and differentiate further-(positive selection), and potentially auto-reactive cells that may cause auto-immune disease are deleted in the thymus (negative selection). Thus, the multi-subunit structure of the TCR may have evolved to enable complex organisms to develop a broad, self-restricted yet auto-tolerant T cell repertoire. In current studies we are using conditional gene expression systems to analyze the importance of TCR signaling at specific stages of development. In addition, we are using microarray and subtractive cloning to identify genes involved in T cell signaling and T cell development. Signaling molecules that function downstream of the TCR or that function to "fine-tune" the TCR signal. Our results with TCR-ITAM mutant mice suggested that other signaling molecules can compensate for the reduction in TCR signal strength. An initial FACS-based search for candidate compensatory molecules led us to CD5, a TCR associated trans-membrane protein that inhibits TCR signaling. Importantly, we found that CD5 surface expression is regulated by and parallels TCR signal intensity. Thus, rather than simply functioning as a co-receptor, CD5 acts to fine-tune TCR signals during thymocyte selection since its level of surface expression depends upon the intensity of TCR signaling. An obvious benefit of such fine-tuning of the TCR signaling response would be to enable the generation of a T cell repertoire with the maximum possible diversity since it would allow a broader range of TCRs to pass through the signaling window of positive selection. Since little was known about how CD5 regulates TCR signaling, we initiated a project to characterize CD5 function, both genetically and biochemically. The results of these experiments suggest a mechanism for CD5 mediated TCR signal inhibition that we are currently testing experimentally. We have also identified a novel T-lineage restricted putative adaptor protein, provisionally named TLAP. Biochemical studies conducted in the interim indicate that TLAP functions in the TCR signaling pathway. TLAP-/- mice have been generated and their phenotype reveals an important role for this protein in thymocyte development. Current and projected experiments are directed at elucidating the function of TLAP in T cell signaling and development. Genes controlling Hematopoietic Stem cell specification and maintenance. The hematopoietic system is composed of a functionally diverse group of cells that originate from a common hematopoietic stem cell (HSC) capable of long-term self-renewal and multi-lineage differentiation. Self-renewal ensures that a pool of HSCs persists throughout life, whereas differentiation leads to the continuous generation of all circulating blood cells including lymphocytes, myeloid cells, erythrocytes and platelets. We have recently initiated experiments aimed at identifying genes important for HSC generation and maintenance. Our initial studies focused on the role of LIM domain binding protein-1 (Ldb1) in hematopoiesis. The results of these experiments revealed a critical function for Ldb1 in regulating the self-renewal/differentiation cell fate decision in hematopoietic stem cells and suggest further that Ldb1 nucleated transcription complexes may control maintenance of lineage specific stem cells.

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stoichiometry of the murine gammadelta T cell receptor.
Knock-in mutation of the distal four tyrosines of linker for activation of T cells blocks murine T cell development.
  • DOI:
    10.1084/jem.194.2.135
  • 发表时间:
    2001-07-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sommers CL;Menon RK;Grinberg A;Zhang W;Samelson LE;Love PE
  • 通讯作者:
    Love PE
Introduction
介绍
Clathrin adaptor AP-2 is essential for early embryonal development
  • DOI:
    10.1128/mcb.25.21.9318-9323.2005
  • 发表时间:
    2005-11-01
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Mitsunari, T;Nakatsu, F;Ohno, H
  • 通讯作者:
    Ohno, H
Tyrosine phosphorylation controls nuclear localization and transcriptional activity of Ssdp1 in mammalian cells.
酪氨酸磷酸化控制哺乳动物细胞中 Ssdp1 的核定位和转录活性。
  • DOI:
    10.1002/jcb.21576
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Dey-Guha,Ipsita;Malik,Nasir;Lesourne,Renaud;Love,PaulE;Westphal,Heiner
  • 通讯作者:
    Westphal,Heiner
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul E Love其他文献

Paul E Love的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul E Love', 18)}}的其他基金

GENETIC ANALYSIS OF THYMOCYTE DEVELOPMENT
胸腺细胞发育的遗传分析
  • 批准号:
    6108096
  • 财政年份:
  • 资助金额:
    $ 120.93万
  • 项目类别:
Signals Regulating T Cell Development
调节 T 细胞发育的信号
  • 批准号:
    7594187
  • 财政年份:
  • 资助金额:
    $ 120.93万
  • 项目类别:

相似国自然基金

Neo-antigens暴露对肾移植术后体液性排斥反应的影响及其机制研究
  • 批准号:
    2022J011295
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
结核分枝杆菌持续感染期抗原(latency antigens)的重组BCG疫苗研究
  • 批准号:
    30801055
  • 批准年份:
    2008
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Bovine herpesvirus 4 as a vaccine platform for African swine fever virus antigens in pigs
牛疱疹病毒 4 作为猪非洲猪瘟病毒抗原的疫苗平台
  • 批准号:
    BB/Y006224/1
  • 财政年份:
    2024
  • 资助金额:
    $ 120.93万
  • 项目类别:
    Research Grant
A novel vaccine approach combining mosquito salivary antigens and viral antigens to protect against Zika, chikungunya and other arboviral infections.
一种结合蚊子唾液抗原和病毒抗原的新型疫苗方法,可预防寨卡病毒、基孔肯雅热和其他虫媒病毒感染。
  • 批准号:
    10083718
  • 财政年份:
    2023
  • 资助金额:
    $ 120.93万
  • 项目类别:
    Small Business Research Initiative
Uncovering tumor specific antigens and vulnerabilities in ETP-acute lymphoblastic leukemia
揭示 ETP-急性淋巴细胞白血病的肿瘤特异性抗原和脆弱性
  • 批准号:
    480030
  • 财政年份:
    2023
  • 资助金额:
    $ 120.93万
  • 项目类别:
    Operating Grants
Regulation of B cell responses to vaccines by long-term retention of antigens in germinal centres
通过在生发中心长期保留抗原来调节 B 细胞对疫苗的反应
  • 批准号:
    MR/X009254/1
  • 财政年份:
    2023
  • 资助金额:
    $ 120.93万
  • 项目类别:
    Research Grant
Adaptive Discrimination of Risk of Antigens in Immune Memory Dynamics
免疫记忆动态中抗原风险的适应性辨别
  • 批准号:
    22KJ1758
  • 财政年份:
    2023
  • 资助金额:
    $ 120.93万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
22-ICRAD Call 2 - Improving the diagnosis of tuberculosis in domestic ruminants through the use of new antigens and test platforms
22-ICRAD 呼吁 2 - 通过使用新抗原和测试平台改善家养反刍动物结核病的诊断
  • 批准号:
    BB/Y000927/1
  • 财政年份:
    2023
  • 资助金额:
    $ 120.93万
  • 项目类别:
    Research Grant
Protective immunity elicited by distinct polysaccharide antigens of classical and hypervirulent Klebsiella
经典和高毒力克雷伯氏菌的不同多糖抗原引发的保护性免疫
  • 批准号:
    10795212
  • 财政年份:
    2023
  • 资助金额:
    $ 120.93万
  • 项目类别:
Integrative proteome analysis to harness humoral immune response against tumor antigens
综合蛋白质组分析利用针对肿瘤抗原的体液免疫反应
  • 批准号:
    23K18249
  • 财政年份:
    2023
  • 资助金额:
    $ 120.93万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Targeting T3SA proteins as protective antigens against Yersinia
将 T3SA 蛋白作为针对耶尔森氏菌的保护性抗原
  • 批准号:
    10645989
  • 财政年份:
    2023
  • 资助金额:
    $ 120.93万
  • 项目类别:
Functionally distinct human CD4 T cell responses to novel evolutionarily selected M. tuberculosis antigens
功能独特的人类 CD4 T 细胞对新型进化选择的结核分枝杆菌抗原的反应
  • 批准号:
    10735075
  • 财政年份:
    2023
  • 资助金额:
    $ 120.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了