PDRemote: Automated Telehealth Diagnostics for Remote Parkinson's Monitoring

PDRemote:用于远程帕金森病监测的自动远程医疗诊断

基本信息

  • 批准号:
    7777166
  • 负责人:
  • 金额:
    $ 19.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The objective is to design, build, and clinically assess a system for automated telehealth diagnostics for remote Parkinson's disease (PD) monitoring. Currently in the United States, there are approximately 1 million patients living with PD and 50,000 new cases reported each year. However, there is limited access to movement disorder specialist centers for a significant portion of this population (Fig 2) as well as limited opportunity for remote continuous monitoring of motor symptoms to capture complex fluctuation patterns and optimize treatment protocols. The proposed PDRemote" system will integrate an existing advanced wireless movement disorder monitoring technology with a new infrastructure to remotely monitor PD patient symptoms. A repeatable, automated tool to more continuously monitor PD motor symptoms at home and remotely transmit severity reports to a clinician should improve outcomes and decrease costs for disparate patient populations not in close proximity to movement disorder specialists. Major PD symptoms include tremor, bradykinesia, and rigidity. Additionally, dyskinesias or wild involuntary movements as a side effect of drug therapy can be a motor complication. The current standard in evaluating symptoms is the Unified Parkinson's Disease Rating Scale (UPDRS), a qualitative ranking system. The UPDRS motor section includes several movements the patient completes to elicit motor symptoms while a clinician qualitatively assesses the symptoms with a 0 - 4 score. It is normally completed during an office visit to obtain a snapshot of motor symptom severity. Clinicians currently lack effective, affordable technologies that can be easily delivered to PD patients for monitoring symptoms on a more continuous basis as symptoms typically fluctuate during the day as a function of treatment parameters. CleveMed previously developed a compact wireless system to quantify movement disorder symptoms called Kinesia". This previously existing technology will serve as the hardware platform for this proposed program. With only minor hardware upgrades required to fit PDRemote and excellent clinical results to date, this existing base enhances likelihood of project success. While previous work has shown excellent results to objectively quantify symptoms during an in clinic exam, this proposed project will integrate several new features to translate this technology from the clinic to a patient's home. This will provide a clinically deployable evaluation tool that doctors can remotely order and then receive reports detailing a patient's PD symptom severity. The clinical technology resulting from this development will allow PD motor symptoms to be remotely monitored by clinicians on a more continuous basis. This should reduce costs and improve clinical outcomes by providing greater time resolution of symptom fluctuations and improving access to symptom monitoring for disparate populations in remote locations. PUBLIC HEALTH RELEVANCE: Parkinson's disease is primarily characterized by motor symptoms of tremor, bradykinesia (slowed movements), and rigidity which can be very debilitating, leading to decreased mobility, independence, and quality of life. Clinicians lack quantitative tools for more continuous monitoring that capture how motor symptoms fluctuate during the day in response to treatment protocols to help minimize Parkinson's motor symptoms. PDRemote" will be a repeatable, automated system clinicians will use to remotely monitor PD motor symptoms on a more continuous basis in a patient's home that should improve outcomes and decrease costs especially for disparate patient populations in areas not in close proximity to movement disorder specialists.
描述(由申请人提供):目标是设计,构建和临床评估用于远程帕金森病(PD)监测的自动远程医疗诊断系统。目前在美国,大约有100万PD患者,每年有5万例新病例报告。然而,对于这一人群的很大一部分来说,进入运动障碍专科中心的机会有限(图2),远程连续监测运动症状以捕捉复杂的波动模式和优化治疗方案的机会也有限。提出的PDRemote系统将集成现有的先进无线运动障碍监测技术和新的基础设施,以远程监测PD患者的症状。一种可重复的自动化工具,可以在家中更持续地监测PD运动症状,并将严重程度报告远程传送给临床医生,这将改善不同患者群体的预后,降低成本,而这些患者群体并不靠近运动障碍专家。帕金森病的主要症状包括震颤、运动迟缓和僵硬。此外,运动障碍或野不自主运动作为药物治疗的副作用可以是运动并发症。目前评估症状的标准是统一帕金森病评定量表(UPDRS),这是一种定性排名系统。UPDRS运动部分包括患者完成的几个动作,以引起运动症状,而临床医生以0 - 4分对症状进行定性评估。它通常在办公室访问期间完成,以获得运动症状严重程度的快照。临床医生目前缺乏有效的、负担得起的技术,这些技术可以很容易地提供给PD患者,用于更连续地监测症状,因为症状通常在白天随着治疗参数的变化而波动。CleveMed之前开发了一种紧凑的无线系统来量化运动障碍的症状,称为“运动障碍”。这种先前存在的技术将作为该计划的硬件平台。现有的基础提高了项目成功的可能性,只需要少量的硬件升级就可以适应PDRemote,并且迄今为止临床效果良好。虽然以前的工作在临床检查中客观量化症状方面取得了出色的成果,但该项目将整合几个新功能,将该技术从诊所转化为患者的家庭。这将提供一种临床可部署的评估工具,医生可以远程订购,然后接收详细报告患者的PD症状严重程度。由此产生的临床技术将允许临床医生在更连续的基础上远程监测PD运动症状。这将降低成本,改善临床结果,为症状波动提供更及时的解决方案,并改善对偏远地区不同人群的症状监测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOSEPH P GIUFFRIDA其他文献

JOSEPH P GIUFFRIDA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOSEPH P GIUFFRIDA', 18)}}的其他基金

ParkinTune: Automated PD Motor Symptom Assessment for DBS Programming
ParkinTune:用于 DBS 编程的自动 PD 运动症状评估
  • 批准号:
    7934369
  • 财政年份:
    2009
  • 资助金额:
    $ 19.94万
  • 项目类别:
ParkinStep: Automated PD Gait and Balance Assessment for Optimizing DBS
ParkinStep:用于优化 DBS 的自动 PD 步态和平衡评估
  • 批准号:
    7746783
  • 财政年份:
    2009
  • 资助金额:
    $ 19.94万
  • 项目类别:
ParkinTune: Automated PD Motor Symptom Assessment for DBS Programming
ParkinTune:用于 DBS 编程的自动 PD 运动症状评估
  • 批准号:
    8390622
  • 财政年份:
    2008
  • 资助金额:
    $ 19.94万
  • 项目类别:
ParkinTune: Automated PD Motor Symptom Assessment for DBS Programming
ParkinTune:用于 DBS 编程的自动 PD 运动症状评估
  • 批准号:
    7537817
  • 财政年份:
    2008
  • 资助金额:
    $ 19.94万
  • 项目类别:
ParkinTune: Automated PD Motor Symptom Assessment for DBS Programming
ParkinTune:用于 DBS 编程的自动 PD 运动症状评估
  • 批准号:
    7922938
  • 财政年份:
    2008
  • 资助金额:
    $ 19.94万
  • 项目类别:
Motor Intention Based Training and Discrimination System
基于运动意图的训练和判别系统
  • 批准号:
    7404297
  • 财政年份:
    2008
  • 资助金额:
    $ 19.94万
  • 项目类别:
Intelligent Task Assist Device for Motor Control in Cerebral Palsy
脑瘫运动控制智能任务辅助装置
  • 批准号:
    7109587
  • 财政年份:
    2006
  • 资助金额:
    $ 19.94万
  • 项目类别:
Neonatal Intensive Care Unit Telemetry System
新生儿重症监护室遥测系统
  • 批准号:
    7121602
  • 财政年份:
    2005
  • 资助金额:
    $ 19.94万
  • 项目类别:
Multimodal Pediatric Motor Recovery System
多模式小儿运动恢复系统
  • 批准号:
    6993052
  • 财政年份:
    2005
  • 资助金额:
    $ 19.94万
  • 项目类别:
Adapative Wireless Computer Mouse for Movement Disorders
针对运动障碍的自适应无线电脑鼠标
  • 批准号:
    6883514
  • 财政年份:
    2005
  • 资助金额:
    $ 19.94万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 19.94万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了