Using gold nanorods to modify the extracellular matrix and mechanical properties
利用金纳米棒修饰细胞外基质和机械性能
基本信息
- 批准号:7895485
- 负责人:
- 金额:$ 17.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAreaAtomic Force MicroscopyAttentionBackBiochemicalBloodBlood flowCardiacCardiovascular systemCellsChargeCollagenCollagen FiberCollagen FibrilCollagen Type IDataDiseaseDrug Delivery SystemsEnsureEquilibriumExtracellular MatrixExtracellular Matrix ProteinsFibroblastsFibrosisFunctional disorderGelGoldHeartHeart DiseasesHeart ValvesImageLeft atrial structureLeft ventricular structureLungMechanicsMediatingMedicineMitral ValveMitral Valve InsufficiencyMutationMyofibroblastOperative Surgical ProceduresOrganPhasePhenotypeProcessProductionPropertyResearchStructural ProteinStructureSurfaceTestingTherapeuticTissuesWorkaortic valvecell behaviorfibrillogenesisfunctional groupinterdisciplinary approachinterestinterstitial cellminimally invasivenanomaterialsnovel strategiespreventpublic health relevancerepairedresponse
项目摘要
DESCRIPTION (provided by applicant): The atrioventricular valves (AV) divide the mammalian heart into four chambers and, combined with the pulmonary and aortic valves, ensure unidirectional blood flow. AV valve leaflets are composed of a trilaminar structure consisting of both valvular interstitial cells and layers of extracellular matrix (ECM) proteins. Of the ECM proteins present, collagen type I is particularly important because it is responsible for the structural support and mechanical durability of the valves. When the balance of collagen turnover is altered, the mechanical properties of the mitral valve leaflets change. If the leaflets become too stiff, as can occur during adaptation to progressive heart disease, or too floppy, as in degenerative valve diseases, the leaflets do not completely close allowing regurgitation to occur. While there are a number of surgical approaches which can repair or completely replace diseased valves, therapeutic strategies aimed at the biochemical changes leading to valvular dysfunction are limited. Nanomaterials are receiving increased attention for their therapeutic potential, largely in the areas of drug delivery and imaging. Recent work from our group has demonstrated that negatively charged gold nanorods can alter cardiac fibroblast phenotype, preventing their transformation into myofibroblasts, and affecting the production of type I collagen. Preliminary data presented herein demonstrates that surface-modified gold nanorods can alter the assembly of type I collagen fibrils which correlates with changes in the mechanical properties of three-dimensional collagen gels. The proposed study will test the hypothesis that surface-modified gold nanorods can modulate valvular interstitial cell behavior by altering the mechanical properties of collagen. Furthermore, it is proposed that by manipulating the surface charge on the nanorods, the mechanical properties of mitral valve leaflets can be tailored to obtain desired functional properties. Two specific aims are proposed to test this hypothesis: 1) To determine the effect of surface-modified gold nanorods on the mechanical properties of atrioventricular valves ex vivo and 2) To determine the mechanism by which surface-modified gold nanorods alter collagen fibrillogenesis. The work proposed herein represents a multidisciplinary approach to investigating the potential uses of gold nanorods in biomedicine, targeted ultimately at developing a minimally invasive therapy for mitral valve regurgitation. If successful, these studies will demonstrate the efficacy of using surface charges presented by gold nanorods to modulate cell behavior, matrix assembly and tissue mechanical properties. These results will not only impact the cardiovascular field, which is greatly interested in mechanisms associated with matrix remodeling and ways to control it, but also other areas of medicine where the control of fibrosis is essential to preserve organ function.
PUBLIC HEALTH RELEVANCE: Collagen is a structural protein found within valve leaflets which is largely responsible for the mechanical properties and proper function of the valves. In response to increased load on the heart or due to genetic defects, the balance between collagen production and degradation, which is maintained by cells within the valve leaflets, becomes shifted and these leaflets can no longer function properly. The work proposed herein will take a novel approach using gold nanorods to regulate cell behavior, collagen assembly and the mechanical properties of heart valves.
描述(由申请人提供):房室瓣(AV)将哺乳动物的心脏分为四个腔室,并与肺动脉瓣和主动脉瓣结合,确保单向血流。AV瓣叶由瓣膜间质细胞和细胞外基质(ECM)蛋白层组成的三层结构组成。在存在的ECM蛋白中,I型胶原蛋白特别重要,因为它负责瓣膜的结构支撑和机械耐久性。当胶原蛋白周转的平衡改变时,二尖瓣瓣叶的机械性能改变。如果瓣叶变得太硬,如在适应进行性心脏病期间可能发生的,或者太软,如在退行性瓣膜疾病中,则瓣叶不完全闭合,从而允许发生返流。虽然有许多手术方法可以修复或完全置换病变瓣膜,但针对导致瓣膜功能障碍的生化变化的治疗策略有限。纳米材料因其治疗潜力而受到越来越多的关注,主要是在药物输送和成像领域。我们小组最近的工作表明,带负电荷的金纳米棒可以改变心脏成纤维细胞的表型,阻止它们转化为肌成纤维细胞,并影响I型胶原蛋白的产生。本文提供的初步数据表明,表面改性的金纳米棒可以改变I型胶原原纤维的组装,这与三维胶原凝胶的机械性质的变化相关。拟议的研究将测试表面改性的金纳米棒可以通过改变胶原的机械性能来调节瓣膜间质细胞行为的假设。此外,有人提出,通过操纵纳米棒上的表面电荷,二尖瓣小叶的机械性能可以定制,以获得所需的功能特性。提出了两个具体的目标来验证这一假设:1)确定表面改性的金纳米棒对体外房室瓣机械性能的影响; 2)确定表面改性的金纳米棒改变胶原纤维形成的机制。本文提出的工作代表了一种多学科的方法来研究金纳米棒在生物医学中的潜在用途,最终目标是开发二尖瓣反流的微创治疗。如果成功,这些研究将证明使用金纳米棒提供的表面电荷来调节细胞行为,基质组装和组织机械性能的有效性。这些结果不仅会影响心血管领域,这是非常感兴趣的机制与基质重塑和控制它的方法,但也有其他领域的医学纤维化的控制是必不可少的,以保持器官功能。
公共卫生相关性:胶原蛋白是在瓣膜小叶内发现的结构蛋白,其主要负责瓣膜的机械性质和适当功能。响应于心脏上的负荷增加或由于遗传缺陷,由瓣叶内的细胞维持的胶原蛋白产生和降解之间的平衡变得偏移,并且这些瓣叶不再能够正常工作。本文提出的工作将采取一种新的方法,使用金纳米棒来调节细胞行为,胶原蛋白组装和心脏瓣膜的机械性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EDIE C GOLDSMITH其他文献
EDIE C GOLDSMITH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EDIE C GOLDSMITH', 18)}}的其他基金
Using gold nanorods to modify the extracellular matrix and mechanical properties
利用金纳米棒修饰细胞外基质和机械性能
- 批准号:
7708428 - 财政年份:2009
- 资助金额:
$ 17.35万 - 项目类别:
Role of Discoidin Domain Receptor 2 in Valvulogenesis
盘状结构域受体 2 在瓣膜形成中的作用
- 批准号:
6874518 - 财政年份:2004
- 资助金额:
$ 17.35万 - 项目类别:
Role of Discoidin Domain Receptor 2 in Valvulogenesis
盘状结构域受体 2 在瓣膜形成中的作用
- 批准号:
7195768 - 财政年份:2004
- 资助金额:
$ 17.35万 - 项目类别:
Role of Discoidin Domain Receptor 2 in Valvulogenesis
盘状结构域受体 2 在瓣膜形成中的作用
- 批准号:
7012689 - 财政年份:2004
- 资助金额:
$ 17.35万 - 项目类别:
Role of Discoidin Domain Receptor 2 in Valvulogenesis
盘状结构域受体 2 在瓣膜形成中的作用
- 批准号:
6777959 - 财政年份:2004
- 资助金额:
$ 17.35万 - 项目类别:
South Carolina IDeA Networks of Biomedical Research Excellence (SC INBRE)
南卡罗来纳州 IDeA 生物医学研究卓越网络 (SC INBRE)
- 批准号:
9902052 - 财政年份:2001
- 资助金额:
$ 17.35万 - 项目类别:
South Carolina IDeA Networks of Biomedical Research Excellence (SC INBRE)
南卡罗来纳州 IDeA 生物医学研究卓越网络 (SC INBRE)
- 批准号:
9320805 - 财政年份:2001
- 资助金额:
$ 17.35万 - 项目类别:
SC INBRE Collaborative Administrative Supplement - Epigenetic and mRNA translational control mediated by adherens protein PLEKHA7
SC INBRE 协作管理补充文件 - 由粘附蛋白 PLEKHA7 介导的表观遗传和 mRNA 翻译控制
- 批准号:
10399796 - 财政年份:2001
- 资助金额:
$ 17.35万 - 项目类别:
Developmental Research Project (DRP) Program
发展研究项目 (DRP) 计划
- 批准号:
10493326 - 财政年份:2001
- 资助金额:
$ 17.35万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 17.35万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 17.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists