Novel Analgesics from Australian Funnel-Web Spider Venom
来自澳大利亚漏斗网蜘蛛毒液的新型镇痛药
基本信息
- 批准号:7844819
- 负责人:
- 金额:$ 20.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-15 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcidsAdaptor Signaling ProteinAffinityAnalgesicsAreaAxonBindingCell membraneChemicalsComplementary DNAComplexConsciousDevelopmentDrosophila genusEconomicsFamilyFiberFutureGated Ion ChannelGenomicsGoalsHTR3A geneHeatingHome environmentHomologous GeneHumanInflammation MediatorsInflammatoryInjuryInsectaInstitutionInternetIon ChannelLaboratoriesLeadLibrariesMalignant NeoplasmsMass Spectrum AnalysisMechanicsMessenger RNAModelingModificationNational Institute of Neurological Disorders and StrokeNeuraxisNeuronsNeuropathyNociceptorsOocytesP2X-receptorPainPeptidesPerceptionPeripheralPharmaceutical PreparationsPharmacologic SubstancePhosphorylationPostoperative PainProteomicsRNA SplicingResearchScreening procedureSensorySensory GangliaSerotoninSignal TransductionSiteSourceSpidersStimulusSystemTestingToxinTranslational ResearchVariantVenomsVertebratesWorkXenopus laevisXenopus oocytecombinatorialin vivomembernovelpre-clinicalpreventreceptorresponsereversed phase chromatographyspider toxin FTXtransmission processvoltage
项目摘要
Pain caused by activation of pain-sensing peripheral neurons ("nociceptors") is a major source of human suffering and economic loss. Activation of nociceptors and the transmission of pain signals to the central nervous system, where they give rise to the conscious perception of pain, requires the coordinated participation of a variety of stimulus- and voltage-gated ion channels. Our long-term goal is the development of pharmaceutical agents for interfering with the functions of ion channels in mammalian nociceptors to ameliorate human pain. We will employ as a source of candidate agents a newly-discovered naturally-occurring combinatorial library of diverse peptide ion channel toxins ("atracotoxins") derived from the venom of Australian funnel-web spiders. To identify members of this library with desirable activity, we will screen them for activity against ion channels known to be important for nociceptor function. The first step in the transduction of painful stimuli-such as extreme heat or cold, noxious chemicals, mechanical injury, or inflammatory mediators-is the activation of stimulus-gated ion channels in the plasma membrane of nociceptors. Once a painful stimulus is transduced by stimulus-gated ion channels into an electrochemical signal, it must be transmitted to the CNS as an electrical signal down the axon of the nociceptor. The transmission of pain signals to the CNS requires activation of voltage-gated ion channels in the endings and axons of nociceptors. We will identify blockers of stimulus- and voltage-gated ion channels in the peripheral terminals of nociceptors by screening atracotoxins against cloned nociceptor ion channels expressed in Xenopus laevis oocytes. Once we have identified a subset of atracotoxins that are active against cloned nociceptor ion channels, we will test each of them against the corresponding native channels in acutely cultured sensory ganglion nociceptors. This secondary screen is essential for excluding from future in vivo studies of candidate analgesics those atracotoxins that are inactive against ion channels in their native state in the nociceptor plasma membrane. These studies will identify lead pharmaceutical agents for use as novel treatments for severe human pain with significant advantages over those that are currently available. In particular, by targeting ion channels present in the peripheral terminals of nociceptors, we open up the possibility for local drug application to the site of peripheral pain. Once these lead agents are identified, we will collaborate with established experts to test these agents in accepted in vivo preclinical mammalian models of pain.
由疼痛感知周围神经元(“伤害感受器”)激活引起的疼痛是人类痛苦和经济损失的主要根源。伤害感受器的激活以及疼痛信号向中枢神经系统的传递,在中枢神经系统中引起疼痛的有意识感知,需要各种刺激门控离子通道和电压门控离子通道的协调参与。我们的长期目标是开发干扰哺乳动物伤害感受器离子通道功能的药剂,以减轻人类疼痛。我们将采用新发现的源自澳大利亚漏斗网蜘蛛毒液的多种肽离子通道毒素(“白曲霉毒素”)的天然组合库作为候选药物的来源。为了识别该库中具有所需活性的成员,我们将筛选它们针对已知对伤害感受器功能重要的离子通道的活性。传导疼痛刺激(例如极热或极冷、有毒化学物质、机械损伤或炎症介质)的第一步是激活伤害感受器质膜中的刺激门控离子通道。一旦疼痛刺激被刺激门控离子通道转换成电化学信号,它必须作为电信号沿着伤害感受器的轴突传输到中枢神经系统。将疼痛信号传输到中枢神经系统需要激活伤害感受器末端和轴突中的电压门控离子通道。我们将通过针对非洲爪蟾卵母细胞中表达的克隆伤害感受器离子通道筛选黄曲霉毒素来鉴定伤害感受器外周末端刺激门控和电压门控离子通道的阻断剂。一旦我们确定了对克隆的伤害感受器离子通道有活性的黄曲霉毒素子集,我们将针对急性培养的感觉神经节伤害感受器中相应的天然通道来测试它们中的每一个。这种二次筛选对于从候选镇痛药的未来体内研究中排除那些在伤害感受器质膜中的天然状态下对离子通道无活性的黄曲霉毒素至关重要。这些研究将确定主要药物作为治疗人类严重疼痛的新疗法,与目前可用的药物相比具有显着优势。特别是,通过针对伤害感受器外周末端存在的离子通道,我们开辟了将局部药物应用于外周疼痛部位的可能性。一旦确定了这些主要药物,我们将与知名专家合作,在公认的临床前哺乳动物疼痛体内模型中测试这些药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Nitabach其他文献
Michael Nitabach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Nitabach', 18)}}的其他基金
Biological Mechanisms of Food-Related Decision Making
食品相关决策的生物学机制
- 批准号:
10707023 - 财政年份:2022
- 资助金额:
$ 20.69万 - 项目类别:
Biological Mechanisms of Food-Related Decision Making
食品相关决策的生物学机制
- 批准号:
10405938 - 财政年份:2022
- 资助金额:
$ 20.69万 - 项目类别:
Synaptic Microcircuits Underlying Associative Learning
关联学习背后的突触微电路
- 批准号:
10642762 - 财政年份:2014
- 资助金额:
$ 20.69万 - 项目类别:
Synaptic Microcircuits Underlying Associative Learning
关联学习背后的突触微电路
- 批准号:
10427181 - 财政年份:2014
- 资助金额:
$ 20.69万 - 项目类别:
Synaptic Microcircuits Underlying Associative Learning
关联学习背后的突触微电路
- 批准号:
10187661 - 财政年份:2014
- 资助金额:
$ 20.69万 - 项目类别:














{{item.name}}会员




