Problems in testing gene-by-enviornment interaction in behavior genetic designs

行为遗传设计中测试基因与环境相互作用的问题

基本信息

  • 批准号:
    7793607
  • 负责人:
  • 金额:
    $ 18.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-04-01 至 2012-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This is an application to evaluate a new set of statistical methods for testing gene-environment interactions (GxE) in the presence of gene-environment correlation in quantitative behavior genetic studies. Significance: Genes rarely influence health and mental health in isolation. Rather, genetic vulnerabilities are necessary but not always sufficient in the etiology of disorders because environmental factors often influence the expression of genetic vulnerabilities. Therefore, GxE is a critically important topic for all genetic research on health. The ultimate goal is to identify interactions between specific genetic polymorphisms and measured environments. Nonetheless, given the wide variety of possible environments involved in GxE for each phenotype, quantitative behavior genetic studies that infer latent genetic influences can serve as efficient screening tools for potential environmental modifiers of genetic influences, informing and strengthening subsequent molecular studies. Innovation: An influential paper by Purcell (2002) proposed a method for testing interactions between latent genetic influences and measured environments (GxM) in the presence of gene-measured environment correlation. We (Rathouz et al., 2008) recently examined statistical aspects of Purcell's approach and found that it incorrectly identifies GxM when it does not exist under some conditions. In addition, mathematical errors in Purcell's decomposition of the variance explained by genes and environments sometimes yield misleading conclusions. Because of the timely importance of accurately identifying GxM, robust statistical procedures must be available for testing it. We proposed a new class of such statistical models and showed how they can be compared to test for GxM (Rathouz et al., 2008). Approach: We request funding to evaluate our new models and procedures for testing GxM using simulation studies. We will develop publicly-available statistical software for fitting the models proposed in Rathouz et al (2008) that are not estimable in standard structural equation modeling software and we will establish sample sizes needed for adequate power under various conditions. We will evaluate the implications of Purcell's mathematically incorrect variance decomposition formulae when GxM is tested. In addition, we propose to evaluate and illustrate our new models in several tests of GxM in actual psychopathology data from two genetically informative data sets. An additional potentially serious concern with all models for testing GxM (Eaves, 2006) is that they are full probability structural models based on distributional assumptions such as the multivariate normality of latent genetic and environmental factors. Therefore, it is extremely important to know if our new GxM models are robust to violations of distributional assumptions or if they yield incorrect results when the scale of measurement of those variables is inherently non-normal. Therefore, we will conduct a series of simulation studies to examine the performance and robustness of our statistical models when distributional assumptions are violated, especially for the kinds of inherently skewed data that are typical in studies of psychopathology. PUBLIC HEALTH RELEVANCE: Gene-environment interactions (GxE) are profoundly important to the public health, but statistical methods for testing GxE in behavior genetic studies are just emerging. The requested funds will allow us to solve important problems in existing statistical methods and evaluate new methods that are more flexible and robust.
描述(由申请人提供):这是一种应用程序,用于评估在定量行为遗传学研究中存在基因-环境相关性的情况下测试基因-环境相互作用(GxE)的一套新的统计方法。意义:基因很少单独影响健康和心理健康。相反,遗传脆弱性在疾病的病因学中是必要的,但并不总是充分的,因为环境因素经常影响遗传脆弱性的表达。因此,GxE对于所有关于健康的遗传学研究来说都是一个至关重要的课题。最终目标是确定特定的遗传多态和测量的环境之间的相互作用。尽管如此,考虑到每种表型GxE可能涉及的环境种类繁多,推断潜在遗传影响的定量行为遗传学研究可以作为遗传影响的潜在环境修饰者的有效筛选工具,为后续的分子研究提供信息和加强。创新:Purcell(2002)的一篇有影响力的论文提出了一种方法,用于在存在基因测量的环境相关性的情况下测试潜在的遗传影响和测量的环境(GxM)之间的交互作用。我们(Ratuz等人,2008年)最近检查了Purcell方法的统计方面,发现当GxM在某些条件下不存在时,它错误地识别GxM。此外,珀塞尔对基因和环境所解释的方差的分解中的数学错误有时会产生误导性的结论。由于准确识别GxM的及时重要性,必须有可靠的统计程序对其进行测试。我们提出了一类新的此类统计模型,并展示了如何将它们与GxM测试进行比较(Ratuz等人,2008年)。方法:我们申请资金来评估我们使用模拟研究测试GxM的新模型和程序。我们将开发公开可用的统计软件,用于拟合RaTower z等人(2008)提出的在标准结构方程建模软件中不可估量的模型,并将确定在各种条件下足够功率所需的样本量。当GxM被测试时,我们将评估Purcell数学上不正确的方差分解公式的含义。此外,我们建议在GxM的几个测试中评估和说明我们的新模型,这些测试来自两个遗传信息数据集的实际精神病理学数据。所有GxM检验模型(Eaves,2006)的另一个潜在的严重问题是,它们是基于分布假设的全概率结构模型,例如潜在遗传和环境因素的多变量正态分布。因此,了解我们的新GxM模型是否对违反分布假设是稳健的,或者当这些变量的测量尺度本身是否是非正态的时,它们是否产生不正确的结果是极其重要的。因此,我们将进行一系列模拟研究,以检验我们的统计模型在违反分布假设时的性能和稳健性,特别是对于精神病理学研究中典型的固有倾斜数据类型。公共卫生相关性:基因-环境相互作用(GxE)对公共健康非常重要,但在行为遗传学研究中测试GxE的统计方法才刚刚出现。所要求的资金将使我们能够解决现有统计方法中的重要问题,并评估更加灵活和稳健的新方法。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparing Alternative Biometric Models with and without Gene-by-Measured Environment Interaction in Behavior Genetic Designs: Statistical Operating Characteristics.
比较行为遗传设计中具有和不具有基因测量环境相互作用的替代生物识别模型:统计操作特征。
  • DOI:
    10.1007/s10519-015-9710-1
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Zheng,Hao;VanHulle,CarolA;Rathouz,PaulJ
  • 通讯作者:
    Rathouz,PaulJ
An evolutionary framework for association testing in resequencing studies.
  • DOI:
    10.1371/journal.pgen.1001202
  • 发表时间:
    2010-11-11
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    King CR;Rathouz PJ;Nicolae DL
  • 通讯作者:
    Nicolae DL
Is there a general factor of prevalent psychopathology during adulthood?
  • DOI:
    10.1037/a0028355
  • 发表时间:
    2012-11
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Lahey, Benjamin B.;Applegate, Brooks;Hakes, Jahn K.;Zald, David H.;Hariri, Ahmad R.;Rathouz, Paul J.
  • 通讯作者:
    Rathouz, Paul J.
Fitting Procedures for Novel Gene-by-Measured Environment Interaction Models in Behavior Genetic Designs.
行为遗传设计中新的基因测量环境相互作用模型的拟合程序。
  • DOI:
    10.1007/s10519-015-9707-9
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Zheng,Hao;Rathouz,PaulJ
  • 通讯作者:
    Rathouz,PaulJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin B Lahey其他文献

Benjamin B Lahey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin B Lahey', 18)}}的其他基金

RDoC Constructs: Neural Substrates, Heritability, and Relation to Psychopathology
RDoC 结构:神经基质、遗传性以及与精神病理学的关系
  • 批准号:
    8664935
  • 财政年份:
    2012
  • 资助金额:
    $ 18.91万
  • 项目类别:
RDoC Constructs: Neural Substrates, Heritability, and Relation to Psychopathology
RDoC 结构:神经基质、遗传性以及与精神病理学的关系
  • 批准号:
    8544499
  • 财政年份:
    2012
  • 资助金额:
    $ 18.91万
  • 项目类别:
RDoC Constructs: Neural Substrates, Heritability, and Relation to Psychopathology
RDoC 结构:神经基质、遗传性以及与精神病理学的关系
  • 批准号:
    8366546
  • 财政年份:
    2012
  • 资助金额:
    $ 18.91万
  • 项目类别:
RDoC Constructs: Neural Substrates, Heritability, and Relation to Psychopathology
RDoC 结构:神经基质、遗传性以及与精神病理学的关系
  • 批准号:
    8895408
  • 财政年份:
    2012
  • 资助金额:
    $ 18.91万
  • 项目类别:
RDoC Constructs: Neural Substrates, Heritability, and Relation to Psychopathology
RDoC 结构:神经基质、遗传性以及与精神病理学的关系
  • 批准号:
    8918233
  • 财政年份:
    2012
  • 资助金额:
    $ 18.91万
  • 项目类别:
Early Causal Risk Factors for Delinquency: Quasi-Experimental Test
犯罪的早期因果风险因素:准实验测试
  • 批准号:
    8069140
  • 财政年份:
    2010
  • 资助金额:
    $ 18.91万
  • 项目类别:
Early Causal Risk Factors for Delinquency: Quasi-Experimental Test
犯罪的早期因果风险因素:准实验测试
  • 批准号:
    7889868
  • 财政年份:
    2010
  • 资助金额:
    $ 18.91万
  • 项目类别:
Early Causal Risk Factors for Delinquency: Quasi-Experimental Test
犯罪的早期因果风险因素:准实验测试
  • 批准号:
    8447076
  • 财政年份:
    2010
  • 资助金额:
    $ 18.91万
  • 项目类别:
Early Causal Risk Factors for Delinquency: Quasi-Experimental Test
犯罪的早期因果风险因素:准实验测试
  • 批准号:
    8246404
  • 财政年份:
    2010
  • 资助金额:
    $ 18.91万
  • 项目类别:
Genetic Epidemiology of Youth Conduct Problems
青少年行为问题的遗传流行病学
  • 批准号:
    6838168
  • 财政年份:
    2004
  • 资助金额:
    $ 18.91万
  • 项目类别:

相似海外基金

Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
A Longitudinal Study of the Relationship between Participation in a Comprehensive Exercise Program and Academic Achievement
参加综合锻炼计划与学业成绩之间关系的纵向研究
  • 批准号:
    24K14615
  • 财政年份:
    2024
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
  • 批准号:
    2420369
  • 财政年份:
    2024
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335800
  • 财政年份:
    2024
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
WTG: Diffusion of Research on Supporting Mathematics Achievement for Youth with Disabilities through Twitter Translational Visual Abstracts
WTG:通过 Twitter 翻译视觉摘要传播支持残疾青少年数学成就的研究
  • 批准号:
    2244734
  • 财政年份:
    2023
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
The Impact of Emotional Experiences of Pride on Long-Term Goal Achievement Behaviors in Elite Athletes
骄傲的情感体验对优秀运动员长期目标实现行为的影响
  • 批准号:
    23K16740
  • 财政年份:
    2023
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Meta-Analysis of the Instructional-Relational Model of Student Engagement and Math Achievement: A Moderation and Mediation Approach
学生参与度和数学成绩的教学关系模型的元分析:一种调节和中介方法
  • 批准号:
    2300738
  • 财政年份:
    2023
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Standard Grant
Improving maths achievement in children with speech, language, and communication needs through 'collaborative vocabulary teaching'
通过“协作词汇教学”提高有言语、语言和交流需求的儿童的数学成绩
  • 批准号:
    2890475
  • 财政年份:
    2023
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Studentship
HSI Institutional Transformation Project: Retention and Achievement for Introductory STEM English Learners (RAISE)
HSI 机构转型项目:STEM 英语入门学习者的保留和成就 (RAISE)
  • 批准号:
    2225178
  • 财政年份:
    2023
  • 资助金额:
    $ 18.91万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了