Digestive Enzymes and Microvascular Inflammation in Shock

休克时的消化酶和微血管炎症

基本信息

项目摘要

DESCRIPTION (provided by applicant): Physiological shock and multi-organ failure is one of the most important medical problems with high mortality. A powerful inflammatory cascade accompanies shock, but there is no consensus for the trigger mechanisms of the inflammation. It is our long-term objective to identify the origin of the inflammation in shock and develop new interventions to minimize the inflammation and multi-organ failure. We recently developed a new line of research that has served to identify pancreatic digestive enzymes in the intestine as key players in shock. This family of enzymes is usually restricted to the lumen of the intestine as part of normal digestion. The digestive enzymes are present in comparatively high concentrations as part of normal digestion, capable to degrade most biological molecules and entire tissues within hours. Under normal circumstances, the digestive enzymes are retained within the lumen of the intestine by the mucosal barrier. But under conditions of shock, the same digestive enzymes are transported from the lumen into the wall of the intestine. Once inside the wall, they initiate an auto-digestion process with release of pancreatic enzymes as well as inflammatory digestive products into the central circulation where they cause cell injury and multi-organ failure. We obtained preliminary evidence to indicate that blockade of the digestive enzymes in the lumen of the intestine dramatically reduces the production of inflammatory mediators and significantly improves survival after severe forms of shock. It is our hypothesis that in hemorrhagic shock the protective barrier normally provided by the brush border epithelium is compromised and allows access of preexisting digestive enzymes into interstitial tissue in the wall of the intestine. The digestive enzymes are carried through multiple pathways into the central circulation where they cause microvascular inflammation and major cell dysfunctions by enzymatic cleavage of membrane receptors, e.g. cleavage of the extracellular domain of tight junction proteins and irreversible elevation of epithelial and endothelial permeability or cleavage of the extracellular binding site of the insulin receptor and insulin resistance. Blockade of the pancreatic enzymes and temporary prevention of digestion in the lumen of the intestine serves to prevent inflammation and reduces mortality due to multi-organ failure. Thus we propose to investigate the following three important Specific Aims: 1. Determine in hemorrhagic shock the activity and transport of the pancreatic digestive enzymes from the lumen of the intestine along multiple pathways into the peripheral microcirculation and the level of the associated microvascular inflammatory reaction. 2. Determine by enzyme blockade in the lumen of the intestine the role of pancreatic digestive enzymes in generation of inflammatory and cytotoxic mediators and in long-term survival after hemorrhagic shock. 3. Measure the level of extracellular receptor cleavage by proteases associated with failure of tight junctions and loss of key cell functions during the early stage of shock. These studies will determine the mechanisms for the origin of the powerful cell and organ injury mechanisms in shock. We will test a new form of intervention against the high mortality in shock that may have clinical utility. PUBLIC HEALTH RELEVANCE: The overall objective of this research is to develop a new intervention against inflammation and cell injury in shock and multi-organ failure, one of the most important problems in terms of mortality. The work is based on the new hypothesis, that in shock the pancreatic digestive enzymes play a central role in the development of inflammation, cell dysfunction and organ failure. These extraordinary powerful digestive enzymes are usually retained in the lumen of the intestine as part of normal digestion and they are prevented from entry into the wall of the intestine by the mucosal barrier. But under conditions of ischemia in the intestine and shock, the mucosal barrier becomes permeable and enzymes pass across the mucosal epithelium into the wall of the intestine and from there into other tissue compartments where they rapidly auto-digest healthy tissue. We provide preliminary evidence that blockade of digestive enzymes in the lumen of the intestine is highly effective to reduce inflammation in diverse forms of shock. But little is known about the details of the transport and the action of pancreatic digestive enzymes under shock conditions in order to optimize blockade of the digestive enzymes. In this project we will determine quantitatively with a new microzymographic technique in hemorrhagic shock the transport of digestive enzymes across the intestinal epithelium into the wall of the intestine, into lymphatics, the peritoneal fluid and into the peripheral microcirculation. We will determine to what degree blockade of the digestive enzymes in the lumen of the intestine reduces mortality in shock. Furthermore we will investigate a new hypothesis for the acute cell dysfunctions in shock in form of receptor cleavage by digestive proteases, e.g. cleavage of tight junction proteins as a mechanisms to cause irreversible increase in epithelial or endothelial permeability or insulin resistance due to cleavage of the extracellular domain of insulin receptors. This research will provide essential information for development of a new intervention against multi-organ failure by transient blockade of the pancreatic digestive enzymes.
描述(由申请人提供):生理性休克和多器官衰竭是最重要的医学问题之一,死亡率高。一个强大的炎症级联反应伴随着休克,但没有共识的触发机制的炎症。我们的长期目标是确定休克中炎症的起源,并开发新的干预措施以最大限度地减少炎症和多器官衰竭。我们最近开发了一种新的研究方法,可以确定肠道中的胰腺消化酶是休克的关键因素。这个酶家族通常局限于肠腔,作为正常消化的一部分。作为正常消化的一部分,消化酶以相对高的浓度存在,能够在数小时内降解大多数生物分子和整个组织。在正常情况下,消化酶通过粘膜屏障保留在肠腔内。但是在休克的情况下,同样的消化酶从肠腔被运送到肠壁。一旦进入壁内,它们就会启动自动消化过程,释放胰腺酶以及炎性消化产物进入中央循环,导致细胞损伤和多器官衰竭。我们获得的初步证据表明,阻断肠腔中的消化酶可显著减少炎症介质的产生,并显著提高严重休克后的存活率。我们的假设是,在失血性休克中,通常由刷状缘上皮提供的保护屏障受到损害,并允许预先存在的消化酶进入肠壁的间质组织。消化酶通过多种途径进入中央循环,在中央循环中,消化酶通过膜受体的酶促裂解引起微血管炎症和主要细胞功能障碍,例如紧密连接蛋白的细胞外结构域的裂解和上皮和内皮通透性的不可逆升高或胰岛素受体的细胞外结合位点的裂解和胰岛素抗性。阻断胰腺酶和暂时阻止肠腔中的消化,有助于预防炎症并降低多器官衰竭导致的死亡率。因此,我们建议研究以下三个重要的具体目标:1。确定失血性休克中胰腺消化酶的活性和从肠腔沿沿着多条途径进入外周微循环的转运,以及相关微血管炎症反应的水平。2.通过肠腔中的酶阻断来确定胰腺消化酶在炎症和细胞毒性介质的产生中以及在失血性休克后的长期存活中的作用。3.测量休克早期与紧密连接失败和关键细胞功能丧失相关的蛋白酶对细胞外受体的切割水平。这些研究将确定休克中强大的细胞和器官损伤机制的起源机制。我们将测试一种新的干预形式,以对抗休克的高死亡率,这可能具有临床实用性。公共卫生关系:这项研究的总体目标是开发一种新的干预措施,以对抗休克和多器官衰竭中的炎症和细胞损伤,这是死亡率方面最重要的问题之一。这项工作是基于一个新的假设,即在休克中,胰腺消化酶在炎症、细胞功能障碍和器官衰竭的发展中起着核心作用。这些非常强大的消化酶通常作为正常消化的一部分保留在肠腔中,并且通过粘膜屏障防止它们进入肠壁。但在肠缺血和休克的情况下,粘膜屏障变得可渗透,酶穿过粘膜上皮进入肠壁,并从那里进入其他组织区室,在那里它们迅速自动消化健康组织。我们提供的初步证据表明,肠腔中消化酶的阻断对于减少各种形式的休克中的炎症非常有效。但是对于休克条件下胰腺消化酶的转运和作用的细节知之甚少,以优化消化酶的阻断。在本项目中,我们将用一种新的微量酶谱技术定量测定失血性休克中消化酶穿过肠上皮进入肠壁、进入消化道、腹膜液和进入外周微循环的转运。我们将确定肠腔中消化酶的阻断在多大程度上降低休克死亡率。此外,我们将研究一种新的假设,即休克中急性细胞功能障碍的形式是消化蛋白酶对受体的切割,例如,紧密连接蛋白的切割是导致上皮或内皮通透性不可逆增加或胰岛素抵抗的机制,这是由于胰岛素受体胞外结构域的切割所致。本研究将为通过短暂阻断胰腺消化酶来治疗多器官功能衰竭提供重要信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Geert W. Schmid-Schoenbein其他文献

Forced perturbation of respiratory system
  • DOI:
    10.1007/bf02584546
  • 发表时间:
    1978-12-01
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Geert W. Schmid-Schoenbein;Y. C. Fung
  • 通讯作者:
    Y. C. Fung

Geert W. Schmid-Schoenbein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Geert W. Schmid-Schoenbein', 18)}}的其他基金

UC-Systemwide Bioengineering Symposium
加州大学全系统生物工程研讨会
  • 批准号:
    8597252
  • 财政年份:
    2013
  • 资助金额:
    $ 27.98万
  • 项目类别:
Digestive Enzymes and Microvascular Inflammation in Shock
休克时的消化酶和微血管炎症
  • 批准号:
    9187459
  • 财政年份:
    2009
  • 资助金额:
    $ 27.98万
  • 项目类别:
Digestive Enzymes and Microvascular Inflammation in Shock
休克时的消化酶和微血管炎症
  • 批准号:
    8228032
  • 财政年份:
    2009
  • 资助金额:
    $ 27.98万
  • 项目类别:
Digestive Enzymes and Microvascular Inflammation in Shock
休克时的消化酶和微血管炎症
  • 批准号:
    8792620
  • 财政年份:
    2009
  • 资助金额:
    $ 27.98万
  • 项目类别:
Digestive Enzymes and Microvascular Inflammation in Shock
休克时的消化酶和微血管炎症
  • 批准号:
    8632760
  • 财政年份:
    2009
  • 资助金额:
    $ 27.98万
  • 项目类别:
Digestive Enzymes and Microvascular Inflammation in Shock
休克时的消化酶和微血管炎症
  • 批准号:
    8037053
  • 财政年份:
    2009
  • 资助金额:
    $ 27.98万
  • 项目类别:
2007 Molecular Mechansims in Lymphatic Function & Disease
2007 淋巴功能的分子机制
  • 批准号:
    7393930
  • 财政年份:
    2008
  • 资助金额:
    $ 27.98万
  • 项目类别:
2006 Molecular Mechanisms in Lymphatic Function & Disease Gordon Conference
2006 淋巴功能的分子机制
  • 批准号:
    7114571
  • 财政年份:
    2006
  • 资助金额:
    $ 27.98万
  • 项目类别:
CORE--ULTRASTRUCTURE
核心--超微结构
  • 批准号:
    6600052
  • 财政年份:
    2002
  • 资助金额:
    $ 27.98万
  • 项目类别:
CORE--ULTRASTRUCTURE
核心--超微结构
  • 批准号:
    6610359
  • 财政年份:
    2002
  • 资助金额:
    $ 27.98万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 27.98万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 27.98万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了