Energetics of Channel-Bilayer Interactions

通道双层相互作用的能量

基本信息

  • 批准号:
    7922787
  • 负责人:
  • 金额:
    $ 41.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Membrane protein function is regulated by changes in the lipid composition of the host bilayer. This regulation, though well-established, remains enigmatic as evident by the many terms that are used to describe its mechanistic basis: changes in bilayer fluidity; changes in bilayer compression or curvature frustration energies, which can be combined into the bilayer deformation energy; changes in lateral pressure profile or lipid packing stress; changes in bilayer free volume; changes in bilayer stiffness. Changes in bilayer fluidity cannot be a major mechanism, as they cannot account for changes in the equilibrium distribution among different protein conformations. The remaining descriptors represent different approaches to parameterize the interactions among bilayer-forming lipids and between the lipids and the embedded proteins. The objective of the proposed studies is to develop an energetic framework for describing the functional consequences of the hydrophobic coupling between membrane-spanning proteins and their host bilayer, and to evaluate how membrane protein-bilayer interactions can be manipulated pharmacologically. The project is based on the notion of an elastic bilayer, in which membrane proteins undergo conformational changes that perturb the adjacent bilayer. This perturbation incurs an energetic cost that contributes to the overall free energy difference of the protein conformational changes. The protein-bilayer hydrophobic coupling therefore causes protein function to vary with changes in lipid bilayer material properties (thickness, lipid intrinsic curvature and the bilayer elastic compression and bending moduli), and the lipid bilayer becomes an allosteric regulator of membrane protein function. Changes in bilayer elastic properties can be characterized in terms of a restoring force that pulls on the embedded channel to minimize the bilayer deformation energy. Changes in this force can be measured using bilayer-embedded for transducers. The experiments will address the following questions. How good is the elastic bilayer model in predicting the energetic cost of channel-bilayer bilayer interactions? Can it be applied to multi-component lipid bilayers? This will be examined using phospholipids (alone or in combination), which form bilayers that differ in thickness and lipid intrinsic curvature. How do small amphiphiles, such as free fatty acids, antimicrobial peptides and other membrane-active molecules alter lipid bilayer material properties and membrane protein function? This will be examined by probing how selected drugs alter bilayer properties, and relating this information to more complex systems. Can PI(4,5)P2 (and other phosphoinositides) alter membrane protein function through local changes in bilayer material properties? This will be examined using gramicidin analogues with appropriately designed phosphoinositide-binding domains. Can the channel-bilayer hydrophobic mismatch drive a lateral association between bilayer-spanning channels? This will be studied by examining the relative stabilization of double- barreled channels of different lengths imbedded in bilayers of different thicknesses. PUBLIC HEALTH RELEVANCE: The proposed studies will examine how important molecules, such as poly-unsaturated fatty acids (PUFAs), alter lipid bilayer properties and thereby membrane protein function. The experimental approach is based on the notion of an elastic bilayer, which contributes to the regulation of membrane protein function through hydrophobic coupling to the embedded membrane proteins. The bilayer elasticity can be altered by the adsorption of PUFAs and other membrane-active compounds, which provides a mechanistic basis for the changes in membrane protein function.
描述(由申请人提供):膜蛋白功能受宿主双层脂质组成变化的调节。这种调节,虽然已经建立,但仍然是谜一样的,因为许多术语被用来描述其机械基础:双层流动性的变化;双层压缩或曲率挫折能量的变化,可以组合成双层变形能量;侧压力分布或脂质包装应力的变化;双层自由体积的变化;双层刚度的变化。双层流动性的变化不能成为主要机制,因为它们不能解释不同蛋白质构象之间平衡分布的变化。其余的描述符代表不同的方法来参数化形成双层的脂质之间的相互作用和脂质和嵌入的蛋白质之间。拟议的研究的目的是开发一个充满活力的框架,用于描述跨膜蛋白和它们的宿主双层之间的疏水耦合的功能后果,并评估如何膜蛋白-双层相互作用可以被操纵。该项目是基于弹性双层的概念,其中膜蛋白经历构象变化,扰动相邻的双层。这种扰动引起的能量成本,有助于蛋白质构象变化的整体自由能差。因此,蛋白质-双层疏水偶联导致蛋白质功能随着脂质双层材料性质(厚度、脂质固有曲率和双层弹性压缩和弯曲模量)的变化而变化,并且脂质双层成为膜蛋白质功能的变构调节剂。双层弹性性质的变化可以根据恢复力来表征,所述恢复力拉动嵌入的通道以使双层变形能最小化。可以使用双层嵌入式传感器来测量该力的变化。实验将解决以下问题。弹性双层模型在预测通道-双层相互作用的能量消耗方面有多好?它能应用于多组分脂质双层吗?这将使用磷脂(单独或组合)进行检查,磷脂形成厚度和脂质固有曲率不同的双层。小分子两亲物,如游离脂肪酸,抗菌肽和其他膜活性分子如何改变脂质双层材料的性质和膜蛋白的功能?这将通过探测所选药物如何改变双层性质,并将此信息与更复杂的系统进行研究。PI(4,5)P2(和其他磷酸肌醇)能通过双层材料性质的局部变化改变膜蛋白功能吗?这将使用具有适当设计的磷酸肌醇结合结构域的短杆菌肽类似物进行检查。通道-双层疏水性错配能否驱动跨双层通道之间的横向缔合?这将通过检查嵌入不同厚度双层中的不同长度的双管通道的相对稳定性来研究。公共卫生相关性:拟议的研究将研究重要分子,如多不饱和脂肪酸(PUFA),如何改变脂质双层特性,从而改变膜蛋白功能。实验方法是基于弹性双层的概念,其有助于通过与嵌入的膜蛋白的疏水偶联来调节膜蛋白功能。PUFA和其他膜活性化合物的吸附可以改变双层弹性,这为膜蛋白功能的变化提供了机制基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OLAF S. ANDERSEN其他文献

OLAF S. ANDERSEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OLAF S. ANDERSEN', 18)}}的其他基金

J. NRSA Training Core
J.NRSA 培训核心
  • 批准号:
    10673896
  • 财政年份:
    2017
  • 资助金额:
    $ 41.85万
  • 项目类别:
J. NRSA Training Core
J.NRSA 培训核心
  • 批准号:
    10632544
  • 财政年份:
    2017
  • 资助金额:
    $ 41.85万
  • 项目类别:
J NRSA Training Core
J NRSA 培训核心
  • 批准号:
    10231114
  • 财政年份:
    2017
  • 资助金额:
    $ 41.85万
  • 项目类别:
J NRSA Training Core
J NRSA 培训核心
  • 批准号:
    9976618
  • 财政年份:
    2017
  • 资助金额:
    $ 41.85万
  • 项目类别:
Putting Molecular Dynamics to the Test: Ion Permeation
测试分子动力学:离子渗透
  • 批准号:
    7103698
  • 财政年份:
    2005
  • 资助金额:
    $ 41.85万
  • 项目类别:
Putting Molecular Dynamics to the Test: Ion Permeation
测试分子动力学:离子渗透
  • 批准号:
    6973714
  • 财政年份:
    2005
  • 资助金额:
    $ 41.85万
  • 项目类别:
Putting Molecular Dynamics to the Test: Ion Permeation
测试分子动力学:离子渗透
  • 批准号:
    7462411
  • 财政年份:
    2005
  • 资助金额:
    $ 41.85万
  • 项目类别:
Putting Molecular Dynamics to the Test: Ion Permeation
测试分子动力学:离子渗透
  • 批准号:
    7263134
  • 财政年份:
    2005
  • 资助金额:
    $ 41.85万
  • 项目类别:
VOLTAGE DEPENDENT SODIUM CHANNEL--PLANAR LIPID BILAYER
电压依赖性钠通道--平面脂质双层
  • 批准号:
    3297367
  • 财政年份:
    1988
  • 资助金额:
    $ 41.85万
  • 项目类别:
VOLTAGE DEPENDENT SODIUM CHANNELS IN PLANAR LIPID BILAYE
平面脂质 BILAYE 中电压依赖性钠通道
  • 批准号:
    3297362
  • 财政年份:
    1988
  • 资助金额:
    $ 41.85万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 41.85万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 41.85万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了