Discovery of Small Molecule MBT Domain Antagonists
小分子 MBT 结构域拮抗剂的发现
基本信息
- 批准号:7812717
- 负责人:
- 金额:$ 43.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:ADP ribosylationAcetylationAcetylesteraseAddressAffinityAmino AcidsAnimal ModelAnisotropyAreaBindingBinding SitesBiologicalBiological AssayBiological ModelsBiologyCalorimetryCellsCellular AssayCellular biologyChemicalsChromatinClassificationCodeCommunitiesComplexCysteineCytosineDNADataDevelopmentDevelopmental BiologyDiseaseDrosophila genusDrug Delivery SystemsEmploymentEnzymesEpigenetic ProcessFamilyFundingGene ExpressionGene SilencingGenerationsGenetic CodeGenomeGoalsGrantHealthHistone CodeHistonesHumanHuman BiologyIn VitroIntellectual PropertyIntentionInvestigationLeadLysineMalignant NeoplasmsMalignant neoplasm of brainMeasurementMethylationModificationMolecular TargetMono-SNeurologyOrganismPeptidesPharmaceutical PreparationsPhosphorylationPlayProteinsRNAReaderReadingRecruitment ActivityRegenerative MedicineRegulationRepressionResearchResearch PersonnelResolutionRoleScreening procedureSideStem cellsStructureTechnologyTestingTherapeuticTitrationsUbiquitinationWritingabstractingarginyllysinebasecancer therapycell typedesignhigh throughput screeninghistone modificationhuman diseasein vivoin vivo Modelinhibitor/antagonistinterestiterative designmembernoveloncologypeptidomimeticsprotein complexpublic health relevancesmall moleculestem cell fatestructural genomicstoolvirtual
项目摘要
DESCRIPTION (provided by applicant): Statement of the Challenge Area and the specific Challenge Topic Research Area: This application addresses Broad Challenge Area (6): Enabling Technologies and Specific Challenge Topic 06-OD-105: Identification of chemical modulators of epigenetic regulators. Project Summary/Abstract: Multicellular organisms have evolved elaborate mechanisms to enable differential and cell-type specific expression of genes. Epigenetics refers to these heritable changes in how the genome is accessed in different cell-types and during development and differentiation. This capability permits specialization of function between cells even though each cell contains the same genome. Over the last decade, the cellular machinery that creates these heritable changes has been the subject of intense scientific investigation as there is no area of biology or indeed, human health where epigenetics may not play a fundamental role.[1] The template upon which the epigenome is written is chromatin - the complex of histone proteins, RNA and DNA that efficiently package the genome in an appropriately accessible state within each cell. The state of chromatin, and therefore access to the genetic code, is largely regulated by specific chemical modifications to histone proteins and DNA, and the recognition of these marks by other proteins and protein complexes. The most important modifications of histones and DNA include: histone lysine and arginine methylation; lysine acetylation; DNA cytosine methylation; and histone sumoylation, ubiquitination, ADP-ribosylation and phosphorylation.[2] Many of these modifications create a binding site to recruit other proteins which can 'read' these marks and lead to cell-type and environmentally appropriate gene expression or repression. Given the wide-spread importance of chromatin regulation to cell biology, the enzymes which produce these modifications (the 'writers'), the proteins that recognize them (the 'readers'), and the enzymes that remove them (the 'erasers') are critical targets for manipulation in order to further understand the histone code and its role in biology and human disease. Indeed, small molecule inhibitors of histone de-acetylases have already proven useful in the treatment of cancer.[3] A systematic and therapeutically unbiased approach to further development of chemical probes for the writers, readers and erasers of the histone code is a major challenge and opportunity for the biomedical community. Cell penetrant, small molecule chemical probes that modulate the regulation of chromatin state are of great significance in the fields of epigenetics, oncology, developmental biology, neurology, stem cell fate and regenerative medicine.[3-5] The creation of a 'tool-kit' of potent, selective, well-characterized and cell-penetrant small molecule probes of chromatin regulation will permit biological hypotheses concerning chromatin-state to be tested with confidence in cell-based and animal models of human biology and disease. Given the emerging evidence of dynamic changes in the histone code, small molecule tools will be uniquely useful in assessing this biology in authentic, functional assays. Indeed, the Structural Genomics Consortium (SGC) has recently announced their intention to focus heavily on epigenetics and creation of chemical probes and we will be collaborating with them in this endeavor. The malignant brain tumor (MBT) repeat is a structural domain of ca. 100 amino acids and occurs in 11 human proteins which recognize mono- and dimethyl-lysine modifications of histones.[6] There are no known small molecule binders of MBT domains. This proposal specifically aims to develop potent antagonists of methyl-lysine recognition by human and Drosophila MBT domain containing proteins in order to permit exploration of the biological consequences of blocking this recognition in cell-based and in vivo models with relevance to normal and disease biology. Current understanding of the biological consequences of MBT domain antagonism would suggest that antagonists may be useful in de-differentiation, re-expression of silenced genes and cellular reprogramming.[7-9] Inclusion of Drosophila MBT domains will enable functional studies in this important model system.[8] In order to discover and characterize high-quality probes for MBT domains: assays will be developed for all human and Drosophila MBT domain containing proteins; small molecule hits will be generated by focused screening, virtual screening and structure based design; hits will be optimized for potency, selectivity and cellular activity consistent with their in vitro profile. The probes developed in the course of this research would be made freely available to the academic biology community with no restrictions on use or intellectual property constraints. Funding from this grant will enable the continued employment of two postdoctoral researchers who are currently funded by start-up funds which will expire in 2010.
PUBLIC HEALTH RELEVANCE: This proposal aims to develop small, drug-like molecules targeted to proteins that regulate how the DNA code is accessed and utilized in the different cell-types of the body. This is a novel area for exploration with many potential applications in the fields of epigenetics, oncology, developmental biology, neurology, stem cell fate and regenerative medicine. The chemical probes designed, synthesized and validated in this proposal will have applications in the discovery of molecular targets to treat diseases such as cancer and in the development of safe stem cell based therapeutics.
描述(由申请人提供):挑战领域和特定挑战主题的陈述研究领域:本申请涉及广泛的挑战领域(6):使能技术和特定挑战主题06-OD-105:表观遗传调节剂的化学调节剂的鉴定。项目摘要/摘要:多细胞生物已经进化出复杂的机制来实现基因的差异表达和细胞类型特异性表达。表观遗传学是指基因组在不同细胞类型以及发育和分化过程中如何进入的可遗传变化。这种能力允许细胞之间的功能特化,即使每个细胞包含相同的基因组。在过去的十年里,产生这些可遗传变化的细胞机制一直是科学研究的重点,因为在生物学乃至人类健康领域,表观遗传学都可能发挥着重要作用书写表观基因组的模板是染色质——组蛋白、RNA和DNA的复合体,它有效地将基因组包装在每个细胞内合适的可接近状态。染色质的状态以及遗传密码的获取在很大程度上是由组蛋白和DNA的特定化学修饰以及其他蛋白质和蛋白质复合物对这些标记的识别来调节的。组蛋白和DNA最重要的修饰包括:组蛋白赖氨酸和精氨酸甲基化;赖氨酸乙酰化作用;DNA胞嘧啶甲基化;组蛋白sumomylation,泛素化,adp -核糖基化和磷酸化许多这些修饰创造了一个结合位点来招募其他蛋白质,这些蛋白质可以“读取”这些标记,并导致细胞类型和环境适当的基因表达或抑制。鉴于染色质调控对细胞生物学的广泛重要性,产生这些修饰的酶(“书写者”)、识别它们的蛋白质(“读取者”)和去除它们的酶(“擦除者”)是操纵的关键目标,以便进一步了解组蛋白密码及其在生物学和人类疾病中的作用。事实上,组蛋白去乙酰化酶的小分子抑制剂已经被证明在治疗癌症方面很有用对于生物医学界来说,为组蛋白编码者、解读者和擦除者进一步开发化学探针是一项重大的挑战和机遇。细胞渗透小分子化学探针调控染色质状态,在表观遗传学、肿瘤学、发育生物学、神经学、干细胞命运和再生医学等领域具有重要意义。[3-5]一套有效的、选择性的、特性良好的、细胞渗透性强的染色质调控小分子探针的“工具箱”的创建,将使有关染色质状态的生物学假设能够在基于细胞和动物的人类生物学和疾病模型中得到有信心的检验。鉴于组蛋白密码动态变化的新证据,小分子工具将在评估这种生物学的真实功能分析中发挥独特的作用。事实上,结构基因组学联盟(SGC)最近宣布他们打算重点关注表观遗传学和化学探针的创造,我们将在这方面与他们合作。恶性脑肿瘤(MBT)重复序列是约100个氨基酸的结构域,存在于11种识别组蛋白单赖氨酸和二甲基赖氨酸修饰的人类蛋白质中目前还没有已知的MBT结构域的小分子结合物。本研究旨在开发人类和果蝇MBT结构域蛋白识别甲基赖氨酸的有效拮抗剂,以便在细胞和体内模型中探索与正常和疾病生物学相关的阻断这种识别的生物学后果。目前对MBT结构域拮抗的生物学后果的了解表明,拮抗剂可能在去分化、沉默基因的重新表达和细胞重编程中有用。[7-9]纳入果蝇MBT结构域将使这一重要模型系统的功能研究成为可能为了发现和表征高质量的MBT结构域探针:将开发所有人类和果蝇MBT结构域蛋白的检测方法;通过集中筛选、虚拟筛选和基于结构的设计将产生小分子命中;命中将优化效力,选择性和细胞活性与他们的体外轮廓一致。在这项研究过程中开发的探针将免费提供给学术生物界,没有使用限制或知识产权限制。这项资助将继续聘用两名由启动基金资助的博士后研究人员,该基金将于2010年到期。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Vernon Frye其他文献
Stephen Vernon Frye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Vernon Frye', 18)}}的其他基金
PROBING ALLOSTERY IN METHYL-LYSINE READER DOMAINS
探索甲基赖氨酸阅读器结构域中的变构
- 批准号:
10369586 - 财政年份:2021
- 资助金额:
$ 43.42万 - 项目类别:
PROBING ALLOSTERY IN METHYL-LYSINE READER DOMAINS
探索甲基赖氨酸阅读器结构域中的变构
- 批准号:
10558469 - 财政年份:2021
- 资助金额:
$ 43.42万 - 项目类别:
DISCOVERY OF IN VIVO CHEMICAL PROBES FOR POLYCOMB CBX DOMAINS
Polycomb CBX 域体内化学探针的发现
- 批准号:
9907857 - 财政年份:2018
- 资助金额:
$ 43.42万 - 项目类别:
Development of Small Molecules that Enhance the Delivery and the Pharmacological Effects of Oligonucleotides
开发增强寡核苷酸递送和药理作用的小分子
- 批准号:
8980120 - 财政年份:2015
- 资助金额:
$ 43.42万 - 项目类别:
DISCOVERY OF CHEMICAL PROBES FOR METHYL-LYSINE READERS
甲基赖氨酸读数器化学探针的发现
- 批准号:
8460807 - 财政年份:2012
- 资助金额:
$ 43.42万 - 项目类别:
DISCOVERY OF CHEMICAL PROBES FOR METHYL-LYSINE READERS
甲基赖氨酸读数器化学探针的发现
- 批准号:
8270684 - 财政年份:2012
- 资助金额:
$ 43.42万 - 项目类别:
Discovery of Small Molecule MBT Domain Antagonists
小分子 MBT 结构域拮抗剂的发现
- 批准号:
7943037 - 财政年份:2009
- 资助金额:
$ 43.42万 - 项目类别:
相似海外基金
Investigating the functions of histone acetylation in genome organization and leukemogenesis
研究组蛋白乙酰化在基因组组织和白血病发生中的功能
- 批准号:
EP/Y000331/1 - 财政年份:2023
- 资助金额:
$ 43.42万 - 项目类别:
Research Grant
Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics
乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系
- 批准号:
10677295 - 财政年份:2023
- 资助金额:
$ 43.42万 - 项目类别:
Novel roles of PDK2 in heart failure: Regulation of mitochondrial nuclear crosstalk via metabolic regulation and histone acetylation
PDK2 在心力衰竭中的新作用:通过代谢调节和组蛋白乙酰化调节线粒体核串扰
- 批准号:
10635599 - 财政年份:2023
- 资助金额:
$ 43.42万 - 项目类别:
Regulation of hepatic lysine N-acetylation by cysteine proximity due to alcohol toxicity
酒精毒性导致的半胱氨酸接近对肝脏赖氨酸 N-乙酰化的调节
- 批准号:
10752320 - 财政年份:2023
- 资助金额:
$ 43.42万 - 项目类别:
Histone Acetylation Regulates Microglial Innate Immune Memory
组蛋白乙酰化调节小胶质细胞先天免疫记忆
- 批准号:
478927 - 财政年份:2023
- 资助金额:
$ 43.42万 - 项目类别:
Operating Grants
Dysregulation of Histone Acetylation in Parkinson's Disease
帕金森病中组蛋白乙酰化的失调
- 批准号:
10855703 - 财政年份:2023
- 资助金额:
$ 43.42万 - 项目类别:
Obesity-related hypertension: the contribution of PPAR gamma acetylation and asprosin
肥胖相关高血压:PPAR γ 乙酰化和白脂素的贡献
- 批准号:
10654210 - 财政年份:2023
- 资助金额:
$ 43.42万 - 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 43.42万 - 项目类别:
In vivo tracing of hepatic ethanol metabolism to histone acetylation: role of ACSS2 in alcohol-induced liver injury
肝脏乙醇代谢与组蛋白乙酰化的体内追踪:ACSS2 在酒精性肝损伤中的作用
- 批准号:
10667952 - 财政年份:2023
- 资助金额:
$ 43.42万 - 项目类别:
The function of TWIST1 acetylation in cell fate and tissue development
TWIST1 乙酰化在细胞命运和组织发育中的作用
- 批准号:
10726986 - 财政年份:2023
- 资助金额:
$ 43.42万 - 项目类别: