The Role of Phosphate Manganese and Iron on Eukaryotic Oxidative Stress

磷酸锰和铁对真核氧化应激的作用

基本信息

  • 批准号:
    7912197
  • 负责人:
  • 金额:
    $ 5.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-04-01 至 2012-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Intracellular manganese ions (Mn) and the enzyme Cu/Zn superoxide dismutase (SOD1) have overlapping roles in oxidative stress protection. While the mechanism of SOD1 action in superoxide detoxification has been well characterized, very little is understood about how cells utilize Mn to suppress oxidative damage independent of SOD enzymes. Recently, using S. cerevisiae as a model organism, we have reported that proper phosphate metabolism is important for suppressing oxidative damage and critical for enabling cells to utilize Mn as an antioxidant. It was found that sod1 null stains engineered to hyperaccumulate phosphate are oxidatively stressed and inviable in air. Preliminary results indicate that high cytoplasmic polyphosphate (PolyP) is responsible for the severity of oxidative damage and phosphate interactions with both Mn and Fe are involved. We hypothesize that PolyP enhances oxidative injury by sequestering Mn and Fe, thereby limiting their availability to the Mn-antioxidant and to essential Fe/S proteins that are susceptible to oxidative injury. The purpose of the current proposal is to test this hypothesis and elucidate the nature of the Mn-antioxidant. In order to determine the role of PolyP in oxidative stress, a series of yeast strains that have altered PolyP metabolism will be engineered. These strains, hereafter referred to as the polyphosphate titratable series (PTS), which will have variations in the size, content, and cellular localization of PolyP, will be exploited to assess the impact of PolyP on various indicators of oxidative stress and on Mn and Fe bioavailability. In the sod1 null background, the PTS strains can be used to determine how PolyP influences Mn-suppression of oxidative damage and Fe availability for repairing damaged Fe/S clusters. Furthermore, we will directly monitor Mn- and Fe-PolyP interactions inside the PTS mutants as a function of oxidative stress resistance by using a newly developed application of ENDOR spectroscopy to whole cells. In toto, these experiments will reveal exactly how polyphosphate influences oxidative stress and the role Mn and Fe play in mediating its toxicity. In addition, the mechanism of Mn suppression of oxidative stress will be determined by employing a high-throughput genetic screen to identify genes that are required for Mn-antioxidant activity. sod1 null yeast will be mutagenized with a transposon library and mutants that exhibit loss of Mn rescue of oxidative damage will be selected. This screen is designed to select for genes that are involved in the metabolism of small molecules that bind and activate Mn for Mn-antioxidant activity. Overall, these studies should provide great insight into the role of phosphate, Mn, and Fe in cellular oxidative stress and the factors that govern Mn suppression of oxidative damage. Studies of this type are at the heart of understanding and perhaps treating the numerous human disorders attributed to oxidative stress. PUBLIC HEALTH RELEVANCE: Damage from oxygen radicals has been linked to a number of human diseases, including reperfusion injury, cancer, cardiovascular disease, neurological degeneration, and aging. Studies into the basic mechanisms of cellular oxidative stress resistance are crucial towards understanding the role of oxygen radicals in disease and to the eventual development of therapeutic strategies. We have recently shown that, in addition to superoxide dismutase (SOD) enzymes, manganese is critical for sustaining life in atmospheric oxygen. However, very little is understood about how cells utilize Mn as an antioxidant. The purpose of the current investigation is to decipher the mechanism of cellular Mn-antioxidant activity, with a particular emphasis on the interplay between phosphate, Mn and Fe metabolism.
描述(由申请方提供):细胞内锰离子(Mn)和酶Cu/Zn超氧化物歧化酶(SOD 1)在氧化应激保护中具有重叠作用。虽然SOD 1在超氧化物解毒中的作用机制已经得到了很好的表征,但关于细胞如何利用Mn来抑制不依赖于SOD酶的氧化损伤的了解很少。最近,利用S.作为模式生物,我们已经报道了适当的磷酸盐代谢对于抑制氧化损伤是重要的,并且对于使细胞能够利用Mn作为抗氧化剂是关键的。研究发现,过度积累磷酸盐的sod 1无效菌株在空气中受到氧化应激而不能存活。初步结果表明,高细胞质多磷酸盐(PolyP)是负责氧化损伤的严重性和磷酸盐与锰和铁的相互作用。我们假设,聚磷酸酶通过螯合锰和铁增强氧化损伤,从而限制它们对锰抗氧化剂和对氧化损伤敏感的必需Fe/S蛋白的可用性。本提案的目的是检验这一假设,并阐明锰抗氧化剂的性质。为了确定PolyP在氧化应激中的作用,将工程化一系列改变PolyP代谢的酵母菌株。这些菌株,以下称为聚磷酸盐可滴定系列(PTS),其将具有PolyP的大小,含量和细胞定位的变化,将被用来评估PolyP对氧化应激的各种指标以及对Mn和Fe生物利用度的影响。在sod 1无效背景下,PTS菌株可用于确定PolyP如何影响Mn抑制氧化损伤和Fe可用性以修复受损的Fe/S簇。此外,我们将通过使用新开发的ENDOR光谱法对全细胞的应用,直接监测PTS突变体内部的Mn-和Fe-PolyP相互作用作为抗氧化应激的函数。总之,这些实验将揭示多磷酸盐如何影响氧化应激以及Mn和Fe在介导其毒性中的作用。此外,锰抑制氧化应激的机制将通过采用高通量遗传筛选来确定锰抗氧化活性所需的基因。用转座子文库诱变sod 1缺失酵母,并选择表现出Mn损失拯救氧化损伤的突变体。该筛选旨在选择参与小分子代谢的基因,所述小分子结合并激活Mn以获得Mn抗氧化活性。总的来说,这些研究应该提供了很大的洞察磷酸盐,锰,铁在细胞氧化应激和锰抑制氧化损伤的因素的作用。这种类型的研究是理解和治疗氧化应激引起的许多人类疾病的核心。 公共卫生关系:来自氧自由基的损伤与许多人类疾病有关,包括再灌注损伤、癌症、心血管疾病、神经变性和衰老。研究细胞抗氧化应激的基本机制对于理解氧自由基在疾病中的作用和最终开发治疗策略至关重要。我们最近表明,除了超氧化物歧化酶(SOD)酶,锰是维持生命的关键在大气中的氧气。然而,很少有人了解细胞如何利用锰作为抗氧化剂。目前的调查的目的是破译细胞锰抗氧化活性的机制,特别强调磷酸盐,锰和铁代谢之间的相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amit Ram Reddi其他文献

Amit Ram Reddi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amit Ram Reddi', 18)}}的其他基金

Illuminating Heme Trafficking and Signaling Pathways in Health and Disease
阐明健康和疾病中的血红素贩运和信号通路
  • 批准号:
    10406606
  • 财政年份:
    2022
  • 资助金额:
    $ 5.05万
  • 项目类别:
Illuminating Heme Trafficking and Signaling Pathways in Health and Disease
阐明健康和疾病中的血红素贩运和信号通路
  • 批准号:
    10614044
  • 财政年份:
    2022
  • 资助金额:
    $ 5.05万
  • 项目类别:
Imaging heme based mitochondrial-cell signaling networks in cell and animal models of heavy metal toxicity
重金属毒性细胞和动物模型中基于血红素的线粒体细胞信号网络成像
  • 批准号:
    9059090
  • 财政年份:
    2015
  • 资助金额:
    $ 5.05万
  • 项目类别:
Imaging heme based mitochondrial-cell signaling networks in cell and animal models of heavy metal toxicity
重金属毒性细胞和动物模型中基于血红素的线粒体细胞信号网络成像
  • 批准号:
    8927908
  • 财政年份:
    2015
  • 资助金额:
    $ 5.05万
  • 项目类别:
The Role of Phosphate Manganese and Iron on Eukaryotic Oxidative Stress
磷酸锰和铁对真核氧化应激的作用
  • 批准号:
    8053338
  • 财政年份:
    2010
  • 资助金额:
    $ 5.05万
  • 项目类别:

相似国自然基金

湍流和化学交互作用对H2-Air-H2O微混燃烧中NO生成的影响研究
  • 批准号:
    51976048
  • 批准年份:
    2019
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Standard Grant
SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
  • 批准号:
    2335500
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Standard Grant
Catalyzing Sustainable Air Travel: Unveiling Consumer Willingness to Pay for Sustainable Aviation Fuel through Information Treatment in Choice Experiment and Cross-Country Analysis
促进可持续航空旅行:通过选择实验和跨国分析中的信息处理揭示消费者支付可持续航空燃油的意愿
  • 批准号:
    24K16365
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
COMPAS: co integration of microelectronics and photonics for air and water sensors
COMPAS:微电子学和光子学的共同集成,用于空气和水传感器
  • 批准号:
    10108154
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    EU-Funded
Simulating Urban Air Pollution In The Lab
在实验室模拟城市空气污染
  • 批准号:
    MR/Y020014/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Fellowship
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
  • 批准号:
    2333683
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Continuing Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
  • 批准号:
    2333684
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Continuing Grant
CRII: CSR: Towards an Edge-enabled Software-Defined Vehicle Framework for Dynamic Over-the-Air Updates
CRII:CSR:迈向支持边缘的软件定义车辆框架,用于动态无线更新
  • 批准号:
    2348151
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Standard Grant
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
  • 批准号:
    24K17404
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
AIR QUALITY AND HEALTH IMPACT OF PRIMARY SEMI-VOLATILE AND SECONDARY PARTICLES AND THEIR ABATEMENT
一次半挥发性颗粒和二次颗粒对空气质量和健康的影响及其消除
  • 批准号:
    10100997
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了