Probing negative affect circuits in humans using 7T fMRI
使用 7T fMRI 探测人类的负面影响回路
基本信息
- 批准号:10752127
- 负责人:
- 金额:$ 7.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnatomyAnteriorAnxietyArchitectureAreaBipolar DisorderBrainCerebral cortexCognitionCollaborationsComputer ModelsCountryDataData SetDevelopmentDiagnosticDiseaseEconomic BurdenEmotionsEngineeringFunctional Magnetic Resonance ImagingGoalsHumanHypothalamic structureImageLearningMammalsMeasuresMental DepressionMental disordersMethodologyMethodsMood DisordersMoodsMotorMovementNegative ValenceParticipantPatternPerceptionPositioning AttributePublic HealthResearchResearch Domain CriteriaResolutionSamplingSchizophreniaSchoolsScientistSensorySignal TransductionStimulusStructural ModelsStructureTechniquesTestingTrainingVisualaffective neurosciencearea striatacareercostexperiencehuman subjectinnovationnegative affectnegative moodneural circuitneuroimagingnext generationnovelpost-doctoral trainingpreventpsychologicsensory cortexskillssomatosensorytheories
项目摘要
Project Summary
Negative mood is a common feature of anxiety, depression, bipolar disorder, and schizophrenia, which inflict
immeasurable human suffering along with a combined economic burden of $600 billion in the US each year. The
brain basis of negative affect has been the focus of costly research efforts, but two critical barriers have slowed
scientific discovery. First, there is no mechanistic explanation for how negative affect is caused in the brain. A
solution to this barrier can be found in predictive processing, an emerging paradigm for unifying brain
mechanisms across emotion, cognition, perception, movement, and other psychological domains. Predictive
processing accounts posit that the brain continuously constructs prediction signals to control visceromotor and
motor movements, while copies of these prediction signals anticipate incoming sensory signals from the body
and the external world. Incoming sensory signals are thought to be relayed throughout the brain as prediction
error signals. No study to date has examined negative affect in relation to the dynamics of signal flow within the
specific architectural features of the brain. To surmount this barrier, I will take advantage of a conceptual
innovation from our lab and thirty years of tract-tracing studies in mammals to test the hypothesis that prediction
signals and prediction error signals can be traced across specific layers of cerebral cortex and subcortical
structures. Briefly, prediction signals are thought to originate in deep layers of cortices that have less laminar
development (e.g., anterior midcingulate cortex, aMCC, which is important for visceromotor control and affect)
and arrive to subcortical structures (e.g., hypothalamus, involved in visceromotor control) and primary sensory
cortices (e.g., primary visual cortex, V1). Interoceptive prediction error signals should originate from subcortical
structures (e.g., hypothalamus) and other (exteroceptive) sensory prediction errors should originate in primary
sensory cortices (e.g., V1), arriving to the upper and deep layers, respectively, of cortices with less laminar
development (e.g., aMCC). In human subjects, these hypotheses remain to be tested due to a second barrier:
neuroimaging methods have lacked sufficient spatial resolution to measure activity in deep vs. upper cortical
layers and small subcortical structures. Newly developed ultra-high field (7 Tesla) fMRI techniques have
sufficient resolution to overcome this barrier. With this methodological innovation, I will probe the mechanisms
that cause negative affect in the circuitry outlined above via functional connectivity analyses of a 7T fMRI dataset
our lab has curated. Ninety-two healthy subjects were instructed to anticipate visual or somatosensory stimuli
(prediction period) that were either unpleasant or neutral and then were presented with the stimuli (prediction
error period). In two specific aims, I will 1) measure dynamic prediction signals during negative affect, and 2)
characterize prediction error signals during negative affect. The proposed research promises to deliver a new
paradigm for studying the brain basis of negative affect, with the ultimate goal of developing targeted treatments
for negative mood, a hallmark feature of many mental illnesses.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Deming其他文献
Philip Deming的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
微创肝切除术中关键解剖结构AI智能识别技术
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
磷脂酰胆碱代谢关键基因参与不明原因猝死的机制研究及分子解剖策略优化
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
吲哚菁绿荧光反染法在胸腔镜下复杂肺段切除术中的应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
膝关节特异解剖数据与前交叉韧带损伤相关风险因素的评估与分析
- 批准号:2025JJ80586
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
消化系统重大疾病关键诊治技术研究-膜解剖腔镜(机器人)胃癌根治术的基础医学数理研究及临床应用
- 批准号:2025C02129
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
新型解剖锁定接骨板治疗不稳定外踝骨折的生物力学与临床应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
先天性耳廓畸形的数据库构建及矫正机制研究
- 批准号:2025JJ80667
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
鼻内镜下经翼突入路海绵窦中颅窝区的应用解剖研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于大脑皮层解剖对齐的类脑视觉感知可解释性方法研
究
- 批准号:2024JJ6190
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
结直肠筋膜系统延续性和淋巴管网解剖观察及筋膜屏障功能研究
- 批准号:2024Y9261
- 批准年份:2024
- 资助金额:40.0 万元
- 项目类别:省市级项目
相似海外基金
ロマン主義パラダイムの領域横断的研究―19世紀前半の比較解剖学・地質学・古生物学
浪漫主义范式的跨学科研究:19世纪上半叶的比较解剖学、地质学和古生物学
- 批准号:
24K03740 - 财政年份:2024
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
解剖学的2重束前十字靭帯再建術における移植腱と固定部間距離の骨孔拡大への影響
解剖型双束前交叉韧带重建中移植肌腱与固定部位距离对骨孔扩大的影响
- 批准号:
23K17252 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
足関節捻挫の診断精度向上につなげる骨形態の解明:解剖学的解析と超音波検査での検証
阐明骨形态可提高踝关节扭伤的诊断准确性:使用解剖分析和超声检查进行验证
- 批准号:
22K17694 - 财政年份:2022
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
平滑筋線維の多様な集合様式に着眼した直腸前方領域の解剖学的解析
直肠前区的解剖分析,重点关注平滑肌纤维的各种组装模式
- 批准号:
21K15329 - 财政年份:2021
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
病理解剖とリキッドバイオプシーによる去勢抵抗性前立腺癌の進展様式の遺伝子学的探索
利用病理尸检和液体活检对去势抵抗性前列腺癌进展模式进行基因探索
- 批准号:
21K09431 - 财政年份:2021
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
肩関節脱臼における肩関節包の解剖学的修復の検討
肩关节脱位肩关节囊的解剖修复检查
- 批准号:
20K20184 - 财政年份:2020
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A new functional anatomy of the iliopsoas muscle that introduced the concept of spinal alignment
髂腰肌的新功能解剖学引入了脊柱排列的概念
- 批准号:
17K18004 - 财政年份:2017
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
各診療科における実践的な手術手技向上を目的とした最良な臨床解剖体作成への試み
尝试创造最佳的临床解剖结构,以提高各临床科室的实用手术技术
- 批准号:
17H00608 - 财政年份:2017
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Encouragement of Scientists
銀河形成最盛期前夜における銀河解剖学:内部物理過程とその環境効果の解明
星系形成高峰前夕的星系解剖:阐明内部物理过程及其环境影响
- 批准号:
16J07112 - 财政年份:2016
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Functional anatomy of the medial preoptic area
内侧视前区的功能解剖
- 批准号:
15K18364 - 财政年份:2015
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)