Multisensory integration and self-motion perception in primate vestibular cortex
灵长类动物前庭皮层的多感觉整合和自我运动感知
基本信息
- 批准号:10753017
- 负责人:
- 金额:$ 7.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-16 至 2025-08-15
- 项目状态:未结题
- 来源:
- 关键词:AnimalsAreaAuditoryAutomobile DrivingAwarenessBehaviorBehavioralBody partBrainCellsClinicalCognitiveCutaneousEnvironmentEquilibriumEthologyFunctional disorderGaitGoalsHeadHead MovementsHumanImpairmentIndividualInjuryInsula of ReilLearningLesionModalityModelingMotionMotion PerceptionMotorMovementMusculoskeletal EquilibriumNeuronal DifferentiationNeuronsOrganismOutcomeParietal LobePatientsPerceptionPhysiciansPlayPopulationPosturePrimatesProcessReportingResearchRoleSchemeSelf PerceptionSensorySignal TransductionSkeletal muscle structure of neckSpace PerceptionStimulusStreamSystemTactileTestingThalamic NucleiThalamic structureVertebratesVestibular nucleus structureVisualclinically relevantcognitive functioncognitive processdensityexperienceexperimental studyextracellulargazeimaging studyimprovedinsightmultimodalitymultisensoryneuralneuromechanismneurophysiologynonhuman primateresponsesensory inputsensory integrationsomatosensoryway finding
项目摘要
Project Summary
In vertebrate animals, the vestibular system (primarily known as the “balance system” of the brain) interprets
head-movement and orientation signals to provide organisms with a sense of self-motion. The vital contribution
of vestibular system to reflexive control of posture, gaze, and gait is well characterized; however, far less is
known about the neural substrates underlying higher-order vestibular functions, such as the perception of self-
motion and the awareness of one's orientation in space. These functions rely on the cortical integration of
vestibular input with somatosensory and visual input. In non-human primates, the parieto-insular vestibular
cortex (PIVC) is uniquely suited to perform this multisensory integration. Unlike other vestibular-sensitive cortical
areas, PIVC has direct access to vestibular, somatosensory, and visual input from the thalamus; indeed, it is
hypothesized that other vestibular cortical areas receive their vestibular input from PIVC, thus making it a nexus
for higher-order vestibular function. Despite its hypothesized importance, extremely little is known about the
neural mechanisms by which PIVC integrates vestibular and extra-vestibular input, and whether this integration
is context dependent. For example, it is unclear whether PIVC neurons differentiate between vestibular input
generated during passive vs. active movements; such differentiation is seen in the vestibular nuclei and thalamus
and is thought to be essential for producing a sense of motor agency. To investigate these issues, I propose to
conduct high-density neurophysiological recordings in behaving primates during both passive stimulation and
actively generated head and whole-body movement. In Aim 1, I will investigate how PIVC integrates passively
applied vestibular and somatosensory input (Aim 1.1) and then vestibular and visual input (Aim 1.2). In Aim 2, I
will investigate whether PIVC differentially processes vestibular input during passive and active movement.
Specifically, I will examine how PIVC processes vestibular input generated during natural self-motion (i.e., self-
motion relying on sensorimotor input in the form of a head-turning task, Aim 2.1). I will then examine how PIVC
processes vestibular input generated during a learned, cognitively demanding motor task (Aim 2.2). In both aims,
I will determine how individual neurons in PIVC encode vestibular and extra-vestibular input, as well as how this
information is represented at the population level. The proposed experiments will resolve two questions which
are fundamental to understanding PIVC function: 1) How does PIVC integrate multisensory input to construct a
percept of self-motion? and 2) Is the processing of self-motion by PIVC neurons consistent with that required to
provide a sense of motor agency? Furthermore, the proposed experiments will determine how sensorimotor and
cognitive percepts of self-motion are represented in PIVC. This research will provide new insights into cortical
vestibular function and how it supports the higher-order processes that allow primates (both human and non-
human) to successfully perceive and navigate their environments.
项目摘要
在脊椎动物中,前庭系统(主要被称为大脑的“平衡系统”)
头部运动和方向信号,为生物体提供自我运动的感觉。的重要贡献
前庭系统对姿势、凝视和步态的反射性控制的特征很好;然而,
关于高级前庭功能的神经基质,如自我感知,
运动和对空间方位的意识。这些功能依赖于大脑皮层整合
前庭输入与躯体感觉和视觉输入。在非人类灵长类动物中,顶岛前庭
皮层(PIVC)是唯一适合执行这种多感觉整合。不像其他前庭敏感皮层
PIVC可以直接进入前庭,体感和来自丘脑的视觉输入;事实上,它是
假设其他前庭皮质区从PIVC接收前庭输入,从而使其成为一个连接
更高级的前庭功能。尽管其假设的重要性,很少有人知道
PIVC整合前庭和前庭外输入的神经机制,以及这种整合
是上下文相关的。例如,目前尚不清楚PIVC神经元是否区分前庭输入,
在被动与主动运动期间产生;这种分化见于前庭核和丘脑
并且被认为是产生运动代理感所必需的。为了研究这些问题,我建议
进行高密度神经生理记录行为灵长类动物在被动刺激和
主动产生的头部和全身运动。在目标1中,我将研究PIVC如何被动地集成
应用前庭和躯体感觉输入(目标1.1),然后是前庭和视觉输入(目标1.2)。在目标2中,我
将研究PIVC是否在被动和主动运动期间差异处理前庭输入。
具体来说,我将研究PIVC如何处理自然自我运动过程中产生的前庭输入(即,自
以转头任务的形式依赖于感觉运动输入的运动,目标2.1)。然后我将研究如何PIVC
处理在学习过程中产生的前庭输入,认知要求运动任务(目标2.2)。在这两个目标中,
我将确定PIVC中的单个神经元是如何编码前庭和前庭外输入的,
信息是在人口一级提供的。拟议的实验将解决两个问题,
是理解PIVC功能的基础:1)PIVC如何整合多感觉输入以构建一个
自我运动的能力?2)PIVC神经元对自我运动的处理是否与
提供一种运动代理的感觉?此外,所提出的实验将确定感觉运动和
自我运动的认知感知在PIVC中表示。这项研究将提供新的见解,
前庭功能,以及它如何支持高阶过程,使灵长类动物(包括人类和非人类),
人类)成功地感知和导航他们的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alejandra Gomez其他文献
Alejandra Gomez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 7.37万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 7.37万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 7.37万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 7.37万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 7.37万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 7.37万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 7.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 7.37万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 7.37万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 7.37万 - 项目类别:
Standard Grant