Remote Kinesiology for Improving Human Health with Auto-locating Compliant Motion Tracking Stickers and Artificial Intelligence
通过自动定位兼容运动跟踪贴纸和人工智能来改善人类健康的远程运动机能学
基本信息
- 批准号:10751952
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-09 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesivesAdoptedAdoptionAffectAlgorithmic AnalysisAlgorithmsAnatomyAndroidArticular Range of MotionArtificial IntelligenceBody RegionsCalibrationClassificationClinicalConfusionDataData ReportingDevicesDimensionsDiseaseExerciseFutureGoalsHealthHospitalsHumanKinesiologyLasersLocationMachine LearningMaster of ScienceMeasurementMethodsModelingMotionOpticsOutcomePersonsPhysical therapy exercisesPrincipal Component AnalysisPublicationsRadialRehabilitation therapyReportingResearchResourcesRotationSkeletonSkinStressSystemTechniquesTestingThinnessTimeTrainingVisualizationWorkarmcantileverclassification algorithmclinical applicationcompliance behaviordesignfabricationflexibilityhealth care service utilizationhealth care settingsimprovedinnovationinsightkinematicsmachine learning algorithmmanufactureprogramssupervised learningusabilitywireless
项目摘要
PROJECT SUMMARY/ABSTRACT
Body mounted inertial measurement units (IMUs) enable human motion tracking and kinematic analysis
beyond the traditional healthcare setting of a hospital or lab. This is a powerful platform for studying how
physical conditions and diseases affect the kinematics of daily activities. Clinical adoption of these body
mounted IMUs can lead to new treatment methods and more efficient utilization of healthcare resources [1]–
[3]. Bulky and uncomfortable form factors of body mounted IMUs, however, compromise patient adherence
and limit clinical adoption [4], [5]. Furthermore, the inability of body mounted IMUs to be removed/replaced on
the body without corrupting most kinematic models and activity classification algorithms, creates the possibility
of significant error during unsupervised use or extended durations of wear [3]. Such challenges with wearability
and usability interfere with the ability to fully realize the potential of body mounted IMU motion systems for
clinical applications. In an effort to address this need, I will apply and evaluate the rapid fabrication techniques,
developed by my lab, to manufacture a fully flexible, extensible, and soft IMU sticker [6]. I will also investigate
the use of artificial intelligence/machine learning to detect the anatomical placement location of body mounted
IMUs through common physical therapy exercises. To accomplish this, I will leverage the natural kinematic
constraints of the body such as axes of rotation, range of motion, and angular velocity, which are unique to
specific regions of the body, to classify the IMU locations with supervised learning [7]. I have already
manufactured a network of unobtrusive body mounted IMUs stickers and developed an approach of using
globally referenced quaternions to track, visualize, and analyze human motion in real-time. I have empirically
determined that the accuracy of this system is comparable to other IMU-based motion tracking systems, and I
have already begun collecting motion tracking data of common physical therapy exercises. I hypothesize that a
more compliant IMU sticker developed using rapid fabrication methods and a K-nearest neighbor (KNN)
classifier trained with motion tracking data (unaltered or decomposed using Principal Component Analysis
(PCA)) will detect the anatomical location of randomly placed body mounted IMU stickers through common
physical therapy exercises. The result of this work will allow me to improve the health outcomes of people in
the future through kinematics, IMUs, and AI.
项目摘要/摘要
身体安装的惯性测量单元(伊穆斯)能够实现人体运动跟踪和运动学分析
超越了医院或实验室的传统医疗环境。这是一个强大的平台,
身体状况和疾病影响日常活动的运动学。临床采用这些机构
安装的伊穆斯可以带来新的治疗方法和更有效地利用医疗资源[1]-
[3]的文件。然而,安装在身体上的伊穆斯的庞大和不舒适的形状因素损害了患者的依从性
并限制临床应用[4],[5]。此外,身体安装的伊穆斯不能在
在不破坏大多数运动学模型和活动分类算法的情况下,
在无监督使用或长时间佩戴期间出现重大错误[3]。这些挑战与可穿戴性
和可用性干扰了充分实现身体安装的IMU运动系统的潜力,
临床应用。为了满足这一需求,我将应用和评估快速制造技术,
由我的实验室开发,以制造一个完全灵活,可扩展和柔软的IMU贴纸[6]。我也会调查
使用人工智能/机器学习来检测身体安装的解剖放置位置
伊穆斯通过共同的物理治疗演习。为了做到这一点,我将利用自然的运动学
身体的约束,如旋转轴,运动范围和角速度,这是唯一的
身体的特定区域,用监督学习对IMU位置进行分类[7]。我已经
制造了一个网络的不显眼的身体安装伊穆斯贴纸,并开发了一种方法,使用
全局引用的四元数来实时跟踪、可视化和分析人体运动。我根据经验
确定该系统的精度与其他基于IMU的运动跟踪系统相当,并且我
已经开始收集常见物理治疗练习的运动跟踪数据。我假设
使用快速制造方法和K-最近邻(KNN)开发的更柔顺的IMU贴纸
用运动跟踪数据(未改变的或使用主成分分析分解的)训练的分类器
(PCA))将通过共同的检测随机放置的身体安装的IMU贴纸的解剖位置。
物理治疗练习这项工作的结果将使我能够改善人们的健康状况,
通过运动学、伊穆斯和人工智能来改变未来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nolen Keeys其他文献
Nolen Keeys的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Investment Accelerator