Systems Mechanobiology Modeling for Patient-Specific Cardiac Fibrosis Predictions
用于患者特异性心脏纤维化预测的系统力学生物学建模
基本信息
- 批准号:10754034
- 负责人:
- 金额:$ 31.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-07 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AmericanAnimal ExperimentsAutomobile DrivingBiochemicalBiologicalBiological AssayBiological MarkersBiologyBiometryBioreactorsCardiacCell Culture TechniquesCell secretionChemicalsCicatrixClinicalClinical TreatmentClinical assessmentsCollagenComplexComputer ModelsCoupledCuesData SetDevelopmentDrug ScreeningEnzyme-Linked Immunosorbent AssayEquationExtracellular MatrixFeedbackFibroblastsFibrosisFunctional disorderGelHeartHeart failureIL6 geneIn VitroInfarctionInhibition of Matrix Metalloproteinases PathwayInterleukin-1Interstitial CollagenaseKineticsLiteratureMatrix MetalloproteinasesMeasurementMeasuresMechanicsMediatingMetalloproteasesMicroscopyModelingMonitorMyocardialMyocardial InfarctionOutcomePathway interactionsPatient SelectionPatientsPlatelet-Derived Growth FactorPrediction of Response to TherapyProcessPrognosisProtein IsoformsProteinsProteomicsPublishingReactionRegulationReportingResearch PersonnelRunningRuptureSamplingSelection for TreatmentsSignal PathwaySignal TransductionStimulusStretchingSystemTNF geneTestingTherapeuticTimeTissue Inhibitor of MetalloproteinasesTissuesTransforming Growth Factor betaWorkclinical prognosiscoronary fibrosiscytokinedesensitizationexperimental studyextracellularfollow-upimprovedkinetic modelmechanical loadmechanical signalmechanical stimulusnetwork modelsnew therapeutic targetpatient populationpatient stratificationpatient variabilitypharmacologicpredictive modelingpreventprognostic modelresponserisk predictionrisk stratificationsecond harmonic generation imagingsimulationwound
项目摘要
PROJECT SUMMARY
Cardiac fibrosis is a major contributor to diastolic and systolic dysfunction for millions of heart failure
patients. Unfortunately, current prediction and control over cardiac fibrosis are lacking due in part to complexity
within collagen regulation networks, and in part to patient-to-patient variabilities in the biochemical and
mechanical cues that regulate collagen turnover. Our overarching hypothesis is that computationally integrating
multiple biochemical and mechanical signaling pathways (rather than a single biomarker) will enable
personalized fibrosis risk predictions and improved therapy selection. In preliminary work, we have developed
two unique, large-scale network models spanning critical collagen regulation processes: a cardiac fibroblast
intracellular signaling network and an extracellular collagen-MMP-TIMP interaction network. For the proposed
work, we will integrate the intracellular and extracellular network models with new cell culture experiments,
existing animal experiments, and existing patient datasets in order to test the model’s ability for predicting cardiac
fibrosis across patient-specific variabilities. We have assembled a team of investigators with expertise spanning
computational modeling, in vitro bioreactors, advanced microscopy, fibroblast and matrix biology, clinical
assessment and treatment of heart failure, and biostatistical analysis, in order to accomplish the following aims:
Aim 1A will test the model-predicted hypothesis that mechanical loading can sensitize, desensitize, and reverse
fibroblast signaling responses to biochemical cues; Aim 1B will test the hypothesis that mechanical loading can
increase and decrease MMP-mediated collagen degradation in an isoform-specific manner; Aim 2 will integrate
the intracellular and extracellular network models and test model-predicted matrix turnover dynamics against
cardiac fibrosis time-courses available in the literature; and Aim 3 will test model-based prognosis across patient-
specific chemo-mechano-contexts. Successful completion of this work will (1) uncover fundamental biological
understanding of chemo-mechano-interactions regulating collagen remodeling, and (2) produce a publicly
available computational model capable of predicting cardiac fibrosis given a personalized chemo-mechano-
context. Our follow-up work will utilize this model for computational drug screens to improve current therapy
selection for patient-specific conditions and to discover novel therapeutic targets for controlling tissue fibrosis.
项目概要
心脏纤维化是导致数百万心力衰竭的舒张和收缩功能障碍的主要原因
患者。不幸的是,由于复杂性,目前缺乏对心脏纤维化的预测和控制
在胶原蛋白调节网络内,部分是由于患者之间的生化和
调节胶原蛋白周转的机械信号。我们的首要假设是通过计算整合
多种生化和机械信号通路(而不是单一生物标志物)将能够
个性化纤维化风险预测和改进的治疗选择。在前期工作中,我们开发了
跨越关键胶原调节过程的两个独特的大规模网络模型:心脏成纤维细胞
细胞内信号网络和细胞外胶原-MMP-TIMP 相互作用网络。对于提议的
工作中,我们将把细胞内和细胞外网络模型与新的细胞培养实验相结合,
现有的动物实验和现有的患者数据集,以测试模型预测心脏的能力
纤维化跨患者特异性变异。我们组建了一支具有专业知识的调查人员团队
计算模型、体外生物反应器、先进显微镜、成纤维细胞和基质生物学、临床
心力衰竭的评估和治疗以及生物统计分析,以实现以下目标:
目标 1A 将测试模型预测的假设,即机械负载可以敏化、减敏和逆转
成纤维细胞信号对生化信号的反应;目标 1B 将检验机械负载可以
以异构体特异性方式增加和减少 MMP 介导的胶原蛋白降解;目标2将整合
细胞内和细胞外网络模型以及测试模型预测的矩阵周转动态
文献中提供的心脏纤维化时间进程;目标 3 将测试基于模型的患者预后
特定的化学机械背景。成功完成这项工作将(1)揭示基本的生物学
了解调节胶原蛋白重塑的化学机械相互作用,以及(2)公开发表
可用的计算模型能够根据个性化的化学机械预测心脏纤维化
语境。我们的后续工作将利用该模型进行计算药物筛选,以改善当前的治疗
针对患者的具体情况进行选择,并发现控制组织纤维化的新治疗靶点。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of Sex and 17 β-Estradiol on Cardiac Fibroblast Morphology and Signaling Activities In Vitro.
性别和 17 β-雌二醇对体外心脏成纤维细胞形态和信号活动的影响。
- DOI:10.3390/cells10102564
- 发表时间:2021-09-28
- 期刊:
- 影响因子:6
- 作者:Watts K;Richardson WJ
- 通讯作者:Richardson WJ
Fibroblast mechanotransduction network predicts targets for mechano-adaptive infarct therapies.
- DOI:10.7554/elife.62856
- 发表时间:2022-02-09
- 期刊:
- 影响因子:7.7
- 作者:Rogers JD;Richardson WJ
- 通讯作者:Richardson WJ
Interpretable machine learning predicts cardiac resynchronization therapy responses from personalized biochemical and biomechanical features.
- DOI:10.1186/s12911-022-02015-0
- 发表时间:2022-10-31
- 期刊:
- 影响因子:3.5
- 作者:Haque, Anamul;Stubbs, Doug;Hubig, Nina C.;Spinale, Francis G.;Richardson, William J.
- 通讯作者:Richardson, William J.
Computational screen for sex-specific drug effects in a cardiac fibroblast signaling network model.
- DOI:10.1038/s41598-023-44440-9
- 发表时间:2023-10-10
- 期刊:
- 影响因子:4.6
- 作者:Watts, Kelsey M.;Nichols, Wesley;Richardson, William J.
- 通讯作者:Richardson, William J.
Network modeling predicts personalized gene expression and drug responses in valve myofibroblasts cultured with patient sera.
- DOI:10.1073/pnas.2117323119
- 发表时间:2022-02-22
- 期刊:
- 影响因子:11.1
- 作者:Rogers JD;Aguado BA;Watts KM;Anseth KS;Richardson WJ
- 通讯作者:Richardson WJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William James Richardson其他文献
William James Richardson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William James Richardson', 18)}}的其他基金
Systems Mechanobiology Modeling for Patient-Specific Cardiac Fibrosis Predictions
用于患者特异性心脏纤维化预测的系统力学生物学建模
- 批准号:
10323449 - 财政年份:2019
- 资助金额:
$ 31.22万 - 项目类别:
Systems Mechanobiology Modeling for Patient-Specific Cardiac Fibrosis Predictions
用于患者特异性心脏纤维化预测的系统力学生物学建模
- 批准号:
10078629 - 财政年份:2019
- 资助金额:
$ 31.22万 - 项目类别:
Predicting collagen turnover for tendon repair across diverse loading environments
预测不同负载环境下肌腱修复的胶原蛋白周转率
- 批准号:
9416677 - 财政年份:2018
- 资助金额:
$ 31.22万 - 项目类别:
相似海外基金
Development of decellularized small-diameter arterial grafts and evaluation in large animal experiments
脱细胞小直径动脉移植物的研制及大动物实验评价
- 批准号:
21H03016 - 财政年份:2021
- 资助金额:
$ 31.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Developing and validating a computational model of the gut microbiota-mucosa interactions to replace and reduce animal experiments
开发和验证肠道微生物群-粘膜相互作用的计算模型,以取代和减少动物实验
- 批准号:
NC/R001707/1 - 财政年份:2018
- 资助金额:
$ 31.22万 - 项目类别:
Training Grant
Developing and validating a computational model of the gut microbiota-mucosa interactions to replace and reduce animal experiments
开发和验证肠道微生物群-粘膜相互作用的计算模型,以取代和减少动物实验
- 批准号:
2103295 - 财政年份:2018
- 资助金额:
$ 31.22万 - 项目类别:
Studentship
Research on the way of information transmission to gain social understanding of animal experiments
动物实验获得社会理解的信息传递方式研究
- 批准号:
16K07080 - 财政年份:2016
- 资助金额:
$ 31.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CDS&E: Modeling the Zebrafish Model Organism Toward Reducing, Refining, and Replacing Animal Experiments
CDS
- 批准号:
1505832 - 财政年份:2015
- 资助金额:
$ 31.22万 - 项目类别:
Standard Grant
Never replicate a successful experiment? Standardization, heterogenization and reproducibility in animal experiments
从未复制过成功的实验?
- 批准号:
283089959 - 财政年份:2015
- 资助金额:
$ 31.22万 - 项目类别:
Research Grants
Arrhythmogenic Drug Evaluation System by Simplified Animal Experiments
简化动物实验的致心律失常药物评价系统
- 批准号:
26350520 - 财政年份:2014
- 资助金额:
$ 31.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Promotion of the 4Rs in animal experiments by the development of a production process for polyclonal antibodies using a goldfish
开发金鱼多克隆抗体生产工艺,促进动物实验中的4R
- 批准号:
23650227 - 财政年份:2011
- 资助金额:
$ 31.22万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of microangiographic systems to visualize cerebular perforating artery in clinical settings and retrobulbar ophthalmic artery arteries in animal experiments.
开发显微血管造影系统,以在临床环境中可视化小脑穿支动脉,并在动物实验中可视化球后眼动脉。
- 批准号:
23390305 - 财政年份:2011
- 资助金额:
$ 31.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The study for the modification of cerebral synapses by balance exercises in the elderly based on animal experiments.
基于动物实验的老年人平衡运动改变大脑突触的研究。
- 批准号:
21500471 - 财政年份:2009
- 资助金额:
$ 31.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)