Applied Statistics to a Secondary Analysis of Public Repositories for Microarray

应用统计学对微阵列公共存储库进行二次分析

基本信息

  • 批准号:
    7802826
  • 负责人:
  • 金额:
    $ 19.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-05-01 至 2012-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The increasing use of genome-wide gene expression profiling has generated great valuable data that offer cost-effective secondary opportunities to investigate additional research questions that were not included in the original intended purpose. Our goal is to develop systematic approaches on a firm statistical footing to conduct a secondary analysis of the existing microarray expression databases. We will lay emphasis on the consistency between the biological background and the statistical modeling in the developments. Such consistency is critical for enhancing the biological efficiency of the developed analysis tools. The retina is a relatively simple and well-characterized area of the central nervous system. Currently, over 200 genes were identified that cause retinal diseases. We will apply the developed methods to retinal microarray expression databases to identify novel genes and gene-gene relationships (pathways) that govern the normal and pathological processes of the retina. We will also explore the possibility of making eye disease predictions through a public database search and comparison. We propose the following specific studies: 1) to develop novel analytical/statistical methods for detecting the genes involved in a biological pathway. We plan to design a statistical strategy that incorporates partial correlation as a core component in this application; 2) to take the first step of turning microarray repositories into a disease diagnosis database. We plan to develop a Bayesian probabilistic method to infer the disease condition of a query microarray data set based on its similarity to those well-characterized data in database; 3) to experimentally validate a subset of in silicon predictions. We will verify the expression of newly identified genes from the first study using standard methods such as real-time PCR and Western blot; 4) to expand our existing software package Gene Expression Analyzer (GEA) (http://cell.rutgers.edu/gea/) to include the newly developed methods. The source code will be made public. The outcome of the project will significantly facilitate the reuse of the vast amount of public datasets to answer additional research questions, reduce the necessity to generate new data, and improve our understanding of cellular functions and networks under a variety of perturbations.
描述(由申请人提供):全基因组基因表达谱的使用越来越多,产生了非常有价值的数据,这些数据提供了具有成本效益的二次机会来调查原始预期目的中未包含的其他研究问题。我们的目标是在坚实的统计基础上开发系统方法,对现有的微阵列表达数据库进行二次分析。我们将在发展中强调生物学背景和统计模型之间的一致性。这种一致性对于提高所开发的分析工具的生物效率至关重要。视网膜是中枢神经系统中相对简单且特征明确的区域。目前,已鉴定出200多个导致视网膜疾病的基因。我们将把开发的方法应用于视网膜微阵列表达数据库,以识别控制视网膜正常和病理过程的新基因和基因-基因关系(途径)。我们还将探索通过公共数据库搜索和比较进行眼部疾病预测的可能性。我们建议进行以下具体研究:1)开发新的分析/统计方法来检测生物途径中涉及的基因。我们计划设计一种统计策略,将偏相关作为该应用程序的核心组件; 2)迈出将微阵列库转变为疾病诊断数据库的第一步。我们计划开发一种贝叶斯概率方法,根据查询微阵列数据集与数据库中那些充分表征的数据的相似性来推断其疾病状况; 3)通过实验验证硅预测的子集。我们将使用实时 PCR 和蛋白质印迹等标准方法验证第一项研究中新鉴定的基因的表达; 4) 扩展我们现有的软件包基因表达分析仪 (GEA) (http://cell.rutgers.edu/gea/) 以包含新开发的方法。源代码将被公开。该项目的成果将极大地促进大量公共数据集的重用,以回答其他研究问题,减少生成新数据的必要性,并提高我们对各种扰动下的细胞功能和网络的理解。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haiyan Huang其他文献

Haiyan Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haiyan Huang', 18)}}的其他基金

Applied Statistics to a Secondary Analysis of Public Repositories for Microarray
应用统计学对微阵列公共存储库进行二次分析
  • 批准号:
    7660278
  • 财政年份:
    2009
  • 资助金额:
    $ 19.02万
  • 项目类别:

相似海外基金

Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
  • 批准号:
    DP240102658
  • 财政年份:
    2024
  • 资助金额:
    $ 19.02万
  • 项目类别:
    Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.02万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
  • 批准号:
    EP/Z532538/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.02万
  • 项目类别:
    Research Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
  • 批准号:
    2335999
  • 财政年份:
    2024
  • 资助金额:
    $ 19.02万
  • 项目类别:
    Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
  • 批准号:
    2334679
  • 财政年份:
    2024
  • 资助金额:
    $ 19.02万
  • 项目类别:
    Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
  • 批准号:
    2401507
  • 财政年份:
    2024
  • 资助金额:
    $ 19.02万
  • 项目类别:
    Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
  • 批准号:
    2243955
  • 财政年份:
    2024
  • 资助金额:
    $ 19.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411529
  • 财政年份:
    2024
  • 资助金额:
    $ 19.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411530
  • 财政年份:
    2024
  • 资助金额:
    $ 19.02万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 19.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了