MODEL-BASED DEVELOPMENT OF NEW DIAGNOSTIC MEASURES

基于模型的新诊断措施开发

基本信息

  • 批准号:
    7955292
  • 负责人:
  • 金额:
    $ 0.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-05-01 至 2010-04-30
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. (A) OBJECTIVES One of the major thrusts of the current NBCR renewal proposal is increased application of Continuity to clinical diagnosis and treatment. The Cardiac Biomechanics Group (CBG) at the University of Virginia has recently used Continuity to develop novel measures of wall motion to improve the accuracy of cardiac stress testing (Herz 2005, 2006). In collaboration with the cardiac MRI and ultrasound imaging groups at the University of Virginia, the CBG is now expanding this model-based development approach to address other diagnostic goals, including improved diagnosis of prior unrecognized myocardial infarction (UMI) during stress testing, noninvasive assessment of synchrony of contraction (Ingrassia 2007), and anatomic mapping of infarct tissue to guide pacemaker lead implantation during cardiac resynchronization therapy (CRT). These efforts are strongly supported by the modeling capabilities of the NBCR but have also raised new modeling challenges regarding the integration of patient-specific image information. Due to the scientific value of studying transgenic mice, the cardiac MRI group at UVa has installed a dedicated small-animal scanner with a console and programming interface identical to our clinical MRI units. This allows us to use ongoing small-animal studies to simultaneously develop and refine clinically applicable diagnostic methods such as Displacement-Encoding with Stimulated Echoes (DENSE) (Kim 2004). Work in this area would benefit from improved models of the mouse heart. Finally, a whole range of clinical and small-animal imaging work would benefit from the ability to better incorporate multi-scale information such as cellular models of ischemia, hormonal stimulation, disrupted calcium cycling, etc. The three Specific Aims below summarize new proposed collaborations in each of these areas: integration of existing and new cellular models with existing cardiac finite-element models, incorporation of image-derived information to tailor those finite-element models to specific patients, and improved modeling of the mouse heart for use in developing and validating new diagnostic methods in transgenic models. In each example, a specific prototypic example will be used to illustrate the intended approach, but the methods developed will be applicable to a wide range of similar problems. The Specific Aims of the proposed collaborative work with the NBCR are: 1) Improve multi-scale capabilities for coupling new and existing cellular models to existing cardiac finite-element models (prototypic example  regional ischemia). 2) Develop methods for incorporating image-derived patient-specific functional information to generate customized cardiac models (prototypic example  DENSE displacement data). 3) Complete and validate a fully functional mouse cardiac finite-element model to complement existing models of other species (prototypic example  post-infarction healing in the mouse). These aims will rely on proposed new developments in Continuity, especially the ability to dynamically author and compile cellular contractile and ionic models [4A.2B Aim 1a], and the ability to fit new models to patient MRI and CT data and to solve and optimize patient-specific models [4A.2B Aim 3]. This Collaborative Project will help drive the basic science and translational applications of Core 2B research and technology development.
这个子项目是许多研究子项目中的一个 由NIH/NCRR资助的中心赠款提供的资源。子项目和 研究者(PI)可能从另一个NIH来源获得了主要资金, 因此可以在其他CRISP条目中表示。所列机构为 研究中心,而研究中心不一定是研究者所在的机构。 (A)目标 当前NBCR更新提案的主要推动力之一是增加连续性在临床诊断和治疗中的应用。弗吉尼亚大学的心脏生物力学小组(CBG)最近使用连续性开发了室壁运动的新测量方法,以提高心脏应力测试的准确性(Herz 2005,2006)。CBG与弗吉尼亚大学的心脏MRI和超声成像小组合作,目前正在扩展这种基于模型的开发方法,以解决其他诊断目标,包括在负荷测试期间改善先前未识别的心肌梗死(UMI)的诊断,收缩同步性的无创评估,(Ingrassia 2007),以及在心脏起搏治疗(CRT)期间引导起搏器电极导线植入的梗死组织解剖标测。这些努力得到NBCR建模能力的有力支持,但也提出了关于患者特定图像信息集成的新建模挑战。由于研究转基因小鼠的科学价值,UVa的心脏MRI组安装了一个专用的小动物扫描仪,其控制台和编程界面与我们的临床MRI单元相同。这使我们能够使用正在进行的小动物研究,同时开发和完善临床适用的诊断方法,如刺激回波位移编码(DENSE)(Kim 2004)。这一领域的工作将受益于改进的小鼠心脏模型。最后,整个范围的临床和小动物成像工作将受益于更好地结合多尺度信息的能力,例如缺血、激素刺激、钙循环中断等的细胞模型。 下面的三个具体目标总结了在这些领域中的每一个新提出的合作:现有的和新的细胞模型与现有的心脏有限元模型的整合,结合图像衍生的信息,以定制这些有限元模型,以特定的患者,并改进小鼠心脏的建模,用于开发和验证转基因模型中的新诊断方法。在每个例子中,将使用一个具体的原型例子来说明预期的方法,但开发的方法将适用于广泛的类似问题。 与NBCR拟议合作的具体目标是: 1)提高将新的和现有的细胞模型耦合到现有心脏有限元模型的多尺度能力(原型示例  局部缺血)。 2)开发用于结合源自图像的患者特异性功能信息的方法,以生成定制的心脏模型(原型示例  DENSE位移数据)。 3)完成并验证功能齐全的小鼠心脏有限元模型,以补充其他物种的现有模型(原型示例  小鼠中的梗塞后愈合)。 这些目标将依赖于Continuity中提出的新发展,特别是动态编写和编译细胞收缩和离子模型的能力[4A.2B目标1a],以及将新模型与患者MRI和CT数据拟合以及求解和优化患者特定模型的能力[4A.2B目标3]。该合作项目将有助于推动核心2B研究和技术开发的基础科学和转化应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEFFREY W HOLMES其他文献

JEFFREY W HOLMES的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEFFREY W HOLMES', 18)}}的其他基金

Systems Pharmacology Model for Spatial Control of Cardiac Fibrosis
心脏纤维化空间控制的系统药理学模型
  • 批准号:
    9363220
  • 财政年份:
    2017
  • 资助金额:
    $ 0.32万
  • 项目类别:
2017 Summer Biomechanics, Bioengineering and Biotransport Conference
2017夏季生物力学、生物工程与生物转运会议
  • 批准号:
    9330598
  • 财政年份:
    2017
  • 资助金额:
    $ 0.32万
  • 项目类别:
Multiscale Models of Cardiac Growth, Remodeling, and Myocardial Infarction
心脏生长、重塑和心肌梗死的多尺度模型
  • 批准号:
    9144435
  • 财政年份:
    2015
  • 资助金额:
    $ 0.32万
  • 项目类别:
Computational Modeling of Scar Formation After Myocardial Infarction
心肌梗塞后疤痕形成的计算模型
  • 批准号:
    8916817
  • 财政年份:
    2014
  • 资助金额:
    $ 0.32万
  • 项目类别:
Computational Modeling of Scar Formation After Myocardial Infarction
心肌梗塞后疤痕形成的计算模型
  • 批准号:
    9131778
  • 财政年份:
    2014
  • 资助金额:
    $ 0.32万
  • 项目类别:
Computational Modeling of Scar Formation After Myocardial Infarction
心肌梗塞后疤痕形成的计算模型
  • 批准号:
    8629133
  • 财政年份:
    2014
  • 资助金额:
    $ 0.32万
  • 项目类别:
Anisotropic Reinforcement to Improve Post-Infarction LV Function
各向异性强化可改善梗塞后左心室功能
  • 批准号:
    8403788
  • 财政年份:
    2012
  • 资助金额:
    $ 0.32万
  • 项目类别:
Anisotropic Reinforcement to Improve Post-Infarction LV Function
各向异性强化可改善梗塞后左心室功能
  • 批准号:
    8223807
  • 财政年份:
    2012
  • 资助金额:
    $ 0.32万
  • 项目类别:
PARAMETERIZATION OF CARDIAC WALL MOTION: REUNITING ENGINEERING & CARDIOLOGY
心壁运动的参数化:重新结合工程
  • 批准号:
    8169343
  • 财政年份:
    2010
  • 资助金额:
    $ 0.32万
  • 项目类别:
PARAMETERIZATION OF CARDIAC WALL MOTION: REUNITING ENGINEERING & CARDIOLOGY
心壁运动的参数化:重新结合工程
  • 批准号:
    7955232
  • 财政年份:
    2009
  • 资助金额:
    $ 0.32万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 0.32万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 0.32万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 0.32万
  • 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
  • 批准号:
    BB/X013049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了