Multiscale Models of Cardiac Growth, Remodeling, and Myocardial Infarction
心脏生长、重塑和心肌梗死的多尺度模型
基本信息
- 批准号:9144435
- 负责人:
- 金额:$ 53.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteBlood CirculationBundle-Branch BlockCanis familiarisCardiacCardiovascular systemCell modelChemicalsChronicCicatrixClinicalComputer SimulationDataDevelopmentEventFinancial compensationGeometryGoalsGrowthHealedHealthHeartHeart failureHistologicHypertrophyImageIndividualInfarctionLawsLeadLeftLeft ventricular structureLocationMagnetic Resonance ImagingMeasuresMechanicsModelingMuscleMuscle CellsMutationMyocardialMyocardial InfarctionMyocardiumPacemakersPatientsPhysiologicalProcessPropertyPublishingRiskRuptureStimulusStretchingStructureTestingTissuesValidationVentricularWorkbasebody systemcardiac resynchronization therapydesignhealingheart dimension/sizehemodynamicsimaging modalityinnovationmembermulti-scale modelingnovelpartial recoverypredicting responsepressureresponsetreatment response
项目摘要
DESCRIPTION (provided by applicant): The major objective of this proposal is to predict through multi-scale modeling long-term growth and remodeling of both post-infarction scar and undamaged myocardium in response to cardiac resynchronization therapy. Over a million people suffer a myocardial infarction (heart attack) each year in the U.S alone. Most survive the initial event, making post-infarction treatment a high priority. In the weeks, months, and years following myocardial infarction (MI), growth and remodeling (G&R) of the damaged heart determine the clinical course of the patient and the impact of most available therapies. In the infarct, damaged muscle is replaced by scar, and the details of scar formation govern the risk of catastrophic infarct rupture, infarct expansion, and other serious potential complications; in noninfarcted regions of the heart, altered mechanical loading triggers myocyte growth and remodeling that often leads to heart failure. The few successful post-MI therapies available to clinicians and many therapies currently under development - including cardiac resynchronization therapy (CRT) - work by altering scar formation, remote remodeling, or both. Yet these therapies are currently developed with no ability to predict their effects on post-infarction remodeling. Therefore, there is a critical need for computational models that can accurately predict post-infarction remodeling in both the infarct and the undamaged myocardium, as well as the response to therapies that alter those processes. Multi-scale computational models of cardiac electromechanics have become increasingly mechanistic and biophysically detailed over the past decade. They can now predict many acute responses to chemical and physical stimuli or genetic defects. Moreover the availability of imaging modalities such as echocardiographic strain rate imaging and tagged MRI have provided detailed 3D strain fields with which computational models of regional ventricular mechanics can be stringently validated. However, multi-scale models of the heart are not yet capable of predicting long-term adaptation under chronic conditions. Members of the project team recently published a novel myocardial growth law, integrated it into a multi-scale model of the heart and cardiovascular system, and accurately predicted long-term cardiac G&R during pressure overload (PO) and volume overload (VO). Other members of our team developed an innovative agent-based model that accurately predicts scar formation and remodeling in healing infarcts. Here, we propose to integrate our electromechanics, G&R and agent-based models and validate them against published and new experimental data, through the following specific aims: Aim 1: To test the hypothesis that strain-dependent growth laws based on the response to relief of pressure and volume overload predict reverse remodeling during CRT; Aim 2: To test the hypothesis that larger infarcts promote eccentric hypertrophy in surviving myocardium due to the interaction of infarct stretching and hemodynamic compensations; Aim 3: To validate model-predicted G&R in response to post-infarction CRT.
描述(由申请人提供):本提案的主要目的是通过多尺度建模预测梗死后瘢痕和未受损心肌对心脏硬化治疗的反应的长期生长和重塑。仅在美国,每年就有超过一百万人患有心肌梗塞(心脏病发作)。大多数患者在最初的事件中存活下来,使梗死后治疗成为高度优先事项。在心肌梗死(MI)后的数周、数月和数年内,受损心脏的生长和重塑(G&R)决定了患者的临床病程和大多数可用疗法的影响。在梗死中,受损的肌肉被瘢痕所取代,瘢痕形成的细节决定了灾难性梗死破裂、梗死扩大和其他严重潜在并发症的风险;在心脏的非梗死区域,改变的机械负荷触发了肌细胞生长和重塑,这通常导致心力衰竭。临床医生可用的少数成功的MI后治疗和目前正在开发的许多治疗-包括心脏硬化治疗(CRT)-通过改变瘢痕形成,远程重塑或两者兼而有之来发挥作用。然而,这些疗法目前还没有能力预测其对梗死后重塑的影响。因此,迫切需要能够准确预测梗死和未受损心肌中的梗死后重构以及对改变这些过程的治疗的反应的计算模型。在过去的十年中,心脏电动力学的多尺度计算模型变得越来越机械和生物物理详细。他们现在可以预测对化学和物理刺激或遗传缺陷的许多急性反应。此外,超声心动图应变率成像和标记MRI等成像方式的可用性提供了详细的3D应变场,可以严格验证局部心室力学的计算模型。然而,心脏的多尺度模型尚不能预测慢性疾病下的长期适应。项目组成员最近发表了一种新颖的心肌生长规律,将其整合到心脏和心血管系统的多尺度模型中,并准确预测了压力超负荷(PO)和容量超负荷(VO)期间的长期心脏G&R。我们团队的其他成员开发了一种创新的基于代理的模型,可以准确预测愈合梗死中的瘢痕形成和重塑。在这里,我们建议整合我们的电动力学,G&R和代理为基础的模型,并验证他们对已发表的和新的实验数据,通过以下具体目标:目的1:为了测试的假设,应变依赖的增长规律的基础上,缓解压力和容量过载预测逆向重构CRT;目的2:为了验证这一假设,即较大的梗死促进存活心肌的离心性肥大,由于梗死伸展和血流动力学代偿的相互作用;目的3:验证模型预测的G&R对梗死后CRT的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY W HOLMES其他文献
JEFFREY W HOLMES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY W HOLMES', 18)}}的其他基金
Systems Pharmacology Model for Spatial Control of Cardiac Fibrosis
心脏纤维化空间控制的系统药理学模型
- 批准号:
9363220 - 财政年份:2017
- 资助金额:
$ 53.53万 - 项目类别:
2017 Summer Biomechanics, Bioengineering and Biotransport Conference
2017夏季生物力学、生物工程与生物转运会议
- 批准号:
9330598 - 财政年份:2017
- 资助金额:
$ 53.53万 - 项目类别:
Computational Modeling of Scar Formation After Myocardial Infarction
心肌梗塞后疤痕形成的计算模型
- 批准号:
8916817 - 财政年份:2014
- 资助金额:
$ 53.53万 - 项目类别:
Computational Modeling of Scar Formation After Myocardial Infarction
心肌梗塞后疤痕形成的计算模型
- 批准号:
9131778 - 财政年份:2014
- 资助金额:
$ 53.53万 - 项目类别:
Computational Modeling of Scar Formation After Myocardial Infarction
心肌梗塞后疤痕形成的计算模型
- 批准号:
8629133 - 财政年份:2014
- 资助金额:
$ 53.53万 - 项目类别:
Anisotropic Reinforcement to Improve Post-Infarction LV Function
各向异性强化可改善梗塞后左心室功能
- 批准号:
8403788 - 财政年份:2012
- 资助金额:
$ 53.53万 - 项目类别:
Anisotropic Reinforcement to Improve Post-Infarction LV Function
各向异性强化可改善梗塞后左心室功能
- 批准号:
8223807 - 财政年份:2012
- 资助金额:
$ 53.53万 - 项目类别:
PARAMETERIZATION OF CARDIAC WALL MOTION: REUNITING ENGINEERING & CARDIOLOGY
心壁运动的参数化:重新结合工程
- 批准号:
8169343 - 财政年份:2010
- 资助金额:
$ 53.53万 - 项目类别:
PARAMETERIZATION OF CARDIAC WALL MOTION: REUNITING ENGINEERING & CARDIOLOGY
心壁运动的参数化:重新结合工程
- 批准号:
7955232 - 财政年份:2009
- 资助金额:
$ 53.53万 - 项目类别:
MODEL-BASED DEVELOPMENT OF NEW DIAGNOSTIC MEASURES
基于模型的新诊断措施开发
- 批准号:
7955292 - 财政年份:2009
- 资助金额:
$ 53.53万 - 项目类别:
相似海外基金
Implication search for peripheral blood circulation cancer cellsas a Liquid biopsy target
外周血循环癌细胞作为液体活检目标的意义研究
- 批准号:
21H03021 - 财政年份:2021
- 资助金额:
$ 53.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Feasibility study to reach 'market readiness' with Recocoa's unique cacao based health bar, which is the only health nutrition bar which meets the European Health Claim (EFSA) in improving blood circulation by maintaining the elasticity of blood vessels.
Recocoa 独特的可可健康棒进行了“市场准备”的可行性研究,该健康棒是唯一符合欧洲健康声明 (EFSA) 通过保持血管弹性改善血液循环的健康营养棒。
- 批准号:
106360 - 财政年份:2020
- 资助金额:
$ 53.53万 - 项目类别:
Collaborative R&D
Feasibility study to reach 'market readiness' with Recocoa's unique cacao based health bar, which is the only health nutrition bar which meets the European Health Claim (EFSA) in improving blood circulation by maintaining the elasticity of blood vessels.
Recocoa 独特的可可健康棒进行了“市场准备”的可行性研究,该健康棒是唯一符合欧洲健康声明 (EFSA) 通过保持血管弹性改善血液循环的健康营养棒。
- 批准号:
72375 - 财政年份:2020
- 资助金额:
$ 53.53万 - 项目类别:
Feasibility Studies
Quantitative evaluation of blood circulation by deep learning in short time DCE-MRI
短时间深度学习DCE-MRI对血液循环的定量评估
- 批准号:
20K08041 - 财政年份:2020
- 资助金额:
$ 53.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the micro blood circulation of the oral free flaps by indocyanin green near-infrared fluorescence angiography
吲哚青绿近红外荧光血管造影评价口腔游离皮瓣的微血循环
- 批准号:
19K10299 - 财政年份:2019
- 资助金额:
$ 53.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a new treatment for pancreatic cancer by controlling immune response avoidance of blood circulation cancer stem cells
通过控制血液循环癌症干细胞的免疫反应避免建立胰腺癌新疗法
- 批准号:
19K09139 - 财政年份:2019
- 资助金额:
$ 53.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of ICG fluorescence contrast imaging analysis system specialized for evaluation of peripheral tissue blood circulation
开发专门评估末梢组织血液循环的ICG荧光对比成像分析系统
- 批准号:
19K18925 - 财政年份:2019
- 资助金额:
$ 53.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Hemopurifier Device for Targeted Removal of Breast Cancer Exosomes from the Blood Circulation
用于从血液循环中靶向去除乳腺癌外泌体的血液净化器装置
- 批准号:
9620493 - 财政年份:2018
- 资助金额:
$ 53.53万 - 项目类别:
Development of the small blood circulation simulator to deepen the non-clinical evaluation of medical devices
开发小型血液循环模拟器深化医疗器械非临床评价
- 批准号:
18H03555 - 财政年份:2018
- 资助金额:
$ 53.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Experimental analysis of conservative therapy for blood circulation disorders using multifaceted optical measurement of nerve activity and peripheral blood flow
多层面光学测量神经活动和外周血流量保守治疗血液循环障碍的实验分析
- 批准号:
17K10764 - 财政年份:2017
- 资助金额:
$ 53.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




