Ionic basis of neuronal hyperexcitability

神经元过度兴奋的离子基础

基本信息

项目摘要

The most significant accomplishment of this project during the current fiscal year has been the implementation of a control theory strategy from the physics literature for suppressing rhythmic firing in alkalinized squid giant axons. Squid axons are robust pacemaker cells firing at 25 Hz for hours on end when the intracellular pH is elevated to 7.8, or higher. They do have what is known as a "fixed point" at -55 mV where the net membrane current is zero when the cell is held at that potential in voltage clamp conditions. However, voltage clamp methodology is not relevant to deep brain stimulation. Moreover, the fixed point is unstable. Rhythmic firing resumes immediately after the voltage clamp is turned off. We have suppressed firing with a technique knows as a dynamic clamp in which the voltage waveform is monitored in real time and a current signal proportional to the voltage is injected back into the cell with a delay. The reference point for the delay is the time of the maximum overshoot of the most recent action potential. When the delay is at the 60% point of the unperturbed pacemaker cycle and the feedback gain is at the appropriate level, firing stops immediately. The cell is close to its fixed point and so the current injected by the feedback circuit immediately drops to zero, or close to zero. The membrane potential moves away from the fixed point since this point is unstable, but the feedback circuit applies current to keep it from moving more than a few mV away from that point. This is a mechanism for suppressing hyperexcitability in which very little current is required once firing has ceased. A flat baseline can never be achieved, but firing of action potentials is eliminated. We are currently investigating the relevance of these results for deep brain stimulation methodologies.
在本财政年度,该项目最重要的成就是实施了物理学文献中的控制理论战略,用于抑制碱化鱿鱼巨轴突的节律性放电。 鱿鱼轴突是强健的起搏细胞,当细胞内pH值升高到7.8或更高时,以25 Hz连续数小时放电。 它们确实在-55 mV处具有所谓的“固定点”,其中当细胞在电压钳条件下保持在该电位时,净膜电流为零。 然而,电压钳方法与深部脑刺激无关。 此外,不动点是不稳定的。 在电压钳位关闭后,节律性放电立即恢复。 我们已经用一种称为动态箝位的技术抑制了放电,在该技术中,电压波形被真实的监测,并且与电压成比例的电流信号被延迟地注入回电池中。 延迟的参考点是最近动作电位的最大过冲的时间。 当延迟处于未扰动起搏器周期的60%点并且反馈增益处于适当水平时,击发立即停止。 电池接近其固定点,因此由反馈电路注入的电流立即下降到零或接近零。 膜电位从固定点移开,因为该点是不稳定的,但是反馈电路施加电流以防止其从该点移开超过几mV。 这是一种抑制过度兴奋的机制,一旦放电停止,只需要很少的电流。 一个平坦的基线永远无法实现,但动作电位的放电被消除了。 我们目前正在研究这些结果与脑深部电刺激方法的相关性。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Localization of voltage-gated K(+) channels in squid giant axons.
鱿鱼巨轴突中电压门控 K( ) 通道的定位。
  • DOI:
    10.1002/1097-4695(20001115)45:3<172::aid-neu5>3.0.co;2-t
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Clay,JR;Kuzirian,AM
  • 通讯作者:
    Kuzirian,AM
A novel, kinesin-rich preparation derived from squid giant axons.
一种源自鱿鱼巨轴突的富含驱动蛋白的新型制剂。
  • DOI:
    10.2307/1543345
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Clay,JR;Kuzirian,AM
  • 通讯作者:
    Kuzirian,AM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOHN CLAY其他文献

JOHN CLAY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOHN CLAY', 18)}}的其他基金

ORGANELLE TRANSPORT OF ION CHANNELS IN EXCITABLE CELLS
可兴奋细胞中离子通道的细胞器运输
  • 批准号:
    6290628
  • 财政年份:
  • 资助金额:
    $ 39.52万
  • 项目类别:
ORGANELLE TRANSPORT OF ION CHANNELS IN EXCITABLE CELLS
可兴奋细胞中离子通道的细胞器运输
  • 批准号:
    6111843
  • 财政年份:
  • 资助金额:
    $ 39.52万
  • 项目类别:
Slow inactivation of voltage gated ion channels
电压门控离子通道缓慢失活
  • 批准号:
    6842371
  • 财政年份:
  • 资助金额:
    $ 39.52万
  • 项目类别:
Ionic basis of neuronal bistability
神经元双稳态的离子基础
  • 批准号:
    7323008
  • 财政年份:
  • 资助金额:
    $ 39.52万
  • 项目类别:
Modulation of neuronal excitability
神经元兴奋性的调节
  • 批准号:
    8746766
  • 财政年份:
  • 资助金额:
    $ 39.52万
  • 项目类别:
Ionic basis of neuronal hyperexcitability
神经元过度兴奋的离子基础
  • 批准号:
    7594649
  • 财政年份:
  • 资助金额:
    $ 39.52万
  • 项目类别:
Organelle Transport Of Ion Channels In Excitable Cells
可兴奋细胞中离子通道的细胞器运输
  • 批准号:
    6501276
  • 财政年份:
  • 资助金额:
    $ 39.52万
  • 项目类别:
Ionic basis of neuronal hyperexcitability
神经元过度兴奋的离子基础
  • 批准号:
    7969519
  • 财政年份:
  • 资助金额:
    $ 39.52万
  • 项目类别:
Molecular mechanisms underlying inactivation of voltage-
电压失活的分子机制
  • 批准号:
    6990003
  • 财政年份:
  • 资助金额:
    $ 39.52万
  • 项目类别:
Modulation of neuronal excitability
神经元兴奋性的调节
  • 批准号:
    8556999
  • 财政年份:
  • 资助金额:
    $ 39.52万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 39.52万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 39.52万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 39.52万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 39.52万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 39.52万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 39.52万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 39.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了