Self-Sensing Physiologic Control of a Rotary Mag Lev LVAD
旋转磁悬浮 LVAD 的自感知生理控制
基本信息
- 批准号:7923133
- 负责人:
- 金额:$ 37.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2012-02-29
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdultAlgorithmsAmericanAmerican Heart AssociationAnalog ComputersAnimal TestingAnimalsArchitectureAssisted CirculationBackBiological ModelsCardiac OutputCardiovascular DiseasesCardiovascular systemCause of DeathChronicCommunitiesComputer SimulationCongestive Heart FailureCoronary ArteriosclerosisDataData SourcesDestinationsDevelopmentDevice DesignsDevicesEvaluationEventFundingGenerationsGoalsGrantHeartHeart DiseasesHeart TransplantationHeart failureHeart-Assist DevicesHumanHypertensionIn VitroInvestigationJournalsLeftLeft ventricular structureMagnetismMeasuresMechanicsMedical centerModelingModificationMorbidity - disease rateMotionMotorNational Heart, Lung, and Blood InstituteOutputPatientsPerformancePhasePhysiologicalPublishingPumpRotationRunningSchemeSignal TransductionSimulateSmall Business Innovation Research GrantSpeedSuctionSystemTestingUnited StatesUnited States National Institutes of HealthUpdateVariantanalogdesigndigitalhemodynamicsimprovedin vitro testingin vivoinnovationmathematical modelmeetingsmortalitynovelnovel strategiespressureprogramsprototypepublic health relevanceresponsesensorsimulationsimulation softwaresuccesssymposiumventricular assist device
项目摘要
DESCRIPTION (provided by applicant): Heart failure is the number one cause of death in the United States and presents an increasing public burden of morbidity and mortality even as the mortality from coronary artery disease and hypertension is decreasing. While an estimated 40,000 congestive heart failure patients are candidates for heart transplantation, only 2,200 donor hearts are made available each year highlighting the need for mechanical circulatory support. In its efforts to develop new treatments of cardiovascular diseases, the NIH NHLBI has funded development of pulsatile and nonpulsatile mechanical circulatory assist devices (MCADs). While, current use of MCADs is increasing, many more patients would benefit if fully implantable and wearable devices with physiologic control systems were available. MiTi's ultimate goal is an implantable rotary Left Ventricular Assist Device (LVAD) with physiologic controller for destination therapy in adult heart failure patients. Key and novel features of the proposed self sensing physiologic controller are its ability to use motor and magnetic bearing signals to adjust LVAD output in response to cardiac output changes through the use of differential pressure and flow estimators all while avoiding suction. The specific goals of this project are to design, implement and demonstrate physiologic control of the MiTiHeart(R) LVAD output through computer simulations, in vitro and in vivo tests. Specifically, MiTi(R)'s Mock Circulator System (MCS) will be modified to more accurately model left ventricle hemodynamics, the physiologic control algorithms having differential pressure, flow and suction avoidance objective functions will be implemented in the MiTiHeart(R) LVAD controller and evaluated in the MCS. Electric analog computer simulations of the MCS and LVAD will be updated and tuned to match the measured data so that evaluations of additional control algorithms and system physical changes can be simulated including replacing the MCS model with a human cardiovascular system model. Finally, in vivo acute animal studies will be completed at Penn State Hershey Medical Center to demonstrate the ability of the physiologic controller to adjust LVAD output without entering suction. The following Specific Aims are planned: (1) Design and implement modifications to the MiTi(R) MCS to more accurately model left ventricle hemodynamics by incorporating improved simulation of left ventricle (LV) ejection flow and pressure. (2) Modify the mathematical model of the MCS developed in Phase I to accept an enhanced LVAD performance model including the physiologic control algorithm. Tune the integrated mathematical model to reflect the measured performance in the MCS. Use the optimized model to assess the ability of the LVAD and controller to respond to simulated changes first in the MCS model and then with a human cardiovascular system (CVS) model. Simulations with both MCS and CVS models will then be performed using the enhanced models to assess performance of the LVAD and physiologic control system under a wide variety of conditions to verify the ability of the controller to vary output with changing physiologic demand while also avoiding suction. (3) Evaluate the physiologic control system performance, suction avoidance and pump differential pressure and flow estimations via in vitro testing in the updated MCS. The physiologic control algorithms and architecture developed under Phase I will be implemented in a dSpace digital control hardware system. The control system will then be used with the MiTiHeart LVAD to characterize and verify the proposed control system in the updated MCS. MCS testing under different simulated heart conditions that encourage suction events will be conducted. (4) Conduct three in vivo acute animal studies to validate performance of the physiologic controller including estimating differential pressure and flow as well as detecting and avoiding suction where the animal heart CO will be pharmacologically modified. PUBLIC HEALTH RELEVANCE: According to the American Heart Association [1], approximately one million Americans die each year from heart disease and almost 4.7 million Americans have congestive heart failure (CHF), a chronic condition in which at least one chamber of the heart is not pumping well enough to meet the body's need. With more than half a million new cases of CHF and only 2,200 donor hearts available for almost 40,000 heart transplantation candidates every year, there is a pressing need for new treatment options such as mechanical circulatory assist devices or heart assist pumps [2]. The success of early developments has resulted in the use of circulatory assistance for short durations [2, 3, 4], however new developments are needed to make long duration use of these heart assist devices possible.
描述(由申请人提供):心力衰竭是美国的头号死亡原因,尽管冠状动脉疾病和高血压的死亡率正在下降,但心力衰竭的发病率和死亡率仍在增加,这是公众负担。虽然估计有40,000名充血性心力衰竭患者是心脏移植的候选者,但每年只有2,200名供体心脏可供使用,这突出了对机械循环支持的需求。为了开发心血管疾病的新疗法,NIH NHLBI资助了脉动式和非脉动式机械循环辅助装置(mcad)的开发。虽然目前mcad的使用正在增加,但如果具有生理控制系统的完全植入式和可穿戴设备可用,更多的患者将受益。MiTi的最终目标是为成人心力衰竭患者提供具有生理控制器的可植入式旋转左心室辅助装置(LVAD)。所提出的自传感生理控制器的关键和新颖之处在于,它能够在避免吸力的同时,通过使用差压和流量估计器,利用电机和磁轴承信号来调节LVAD输出,以响应心输出量的变化。该项目的具体目标是通过计算机模拟、体外和体内测试来设计、实施和演示MiTiHeart(R) LVAD输出的生理控制。具体来说,MiTi(R)的模拟循环系统(MCS)将被修改,以更准确地模拟左心室血流动力学,具有压差、流量和吸力回避目标函数的生理控制算法将在MiTiHeart(R) LVAD控制器中实现,并在MCS中进行评估。MCS和LVAD的电子模拟计算机模拟将进行更新和调整,以匹配测量数据,从而可以模拟额外控制算法和系统物理变化的评估,包括用人类心血管系统模型代替MCS模型。最后,将在宾夕法尼亚州立好时医学中心完成体内急性动物研究,以证明生理控制器在不进入抽吸的情况下调节LVAD输出的能力。计划以下具体目标:(1)设计并实现对MiTi(R) MCS的修改,通过改进左心室(LV)射血流量和压力的模拟,更准确地模拟左心室血流动力学。(2)修改第一阶段开发的MCS的数学模型,以接受包括生理控制算法在内的增强的LVAD性能模型。调整集成数学模型以反映MCS中测量的性能。使用优化模型评估LVAD和控制器对模拟变化的响应能力,首先在MCS模型中,然后在人类心血管系统(CVS)模型中。然后,将使用增强模型对MCS和CVS模型进行仿真,以评估LVAD和生理控制系统在各种条件下的性能,以验证控制器随着生理需求的变化而改变输出的能力,同时避免吸力。(3)在更新后的MCS中,通过体外测试评估生理控制系统性能、吸阻和泵压差和流量估计。在第一阶段开发的生理控制算法和架构将在dSpace数字控制硬件系统中实现。然后,控制系统将与MiTiHeart LVAD一起使用,在更新的MCS中表征和验证拟议的控制系统。将在不同的模拟心脏条件下进行MCS测试,以鼓励抽吸事件。(4)进行三次体内急性动物研究,以验证生理控制器的性能,包括估计压差和流量,以及检测和避免将对动物心脏CO进行药理学修饰的抽吸。公共卫生相关性:根据美国心脏协会b[1]的数据,每年大约有100万美国人死于心脏病,近470万美国人患有充血性心力衰竭(CHF),这是一种慢性疾病,至少有一个心脏腔不能很好地满足身体的需要。每年有50多万新发瑞士法郎病例,而近4万名心脏移植候选人只能获得2200颗供体心脏,因此迫切需要新的治疗选择,如机械循环辅助装置或心脏辅助泵[2]。早期发展的成功已经导致使用循环辅助短时间[2,3,4],但需要新的发展,使这些心脏辅助装置的长时间使用成为可能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Farley Walton其他文献
James Farley Walton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Farley Walton', 18)}}的其他基金
Self-Sensing Physiologic Control of a Rotary Mag Lev LVAD
旋转磁悬浮 LVAD 的自感知生理控制
- 批准号:
7325486 - 财政年份:2007
- 资助金额:
$ 37.38万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 37.38万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 37.38万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 37.38万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 37.38万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 37.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 37.38万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 37.38万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 37.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 37.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 37.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)