Pseudo-3D Cytoskeleton Dynamics and Signal Activation in Osteocytes under Flow
流动下骨细胞的伪 3D 细胞骨架动力学和信号激活
基本信息
- 批准号:7978377
- 负责人:
- 金额:$ 18.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActinsAddressAdhesionsApicalAreaBasic ScienceBiochemicalBiologyBiosensorBone TissueCell AdhesionCell modelCell physiologyCellsCellular MechanotransductionCellular biologyComplexComputer SimulationCytoskeletonDendritesEtiologyEventExtracellular MatrixFluorescence Resonance Energy TransferFocal Adhesion Kinase 1FrequenciesGrantHealthImageImaging TechniquesIndividualLiquid substanceMature BoneMeasuresMechanical StimulationMechanicsMicrofilamentsMicroscopyMicrotubulesModelingMorphologyNatureOsteoblastsOsteoclastsOsteocytesOsteoporosisPathway interactionsPhosphotransferasesPhysiologicalPlayPrintingProcessPropertyResearchResolutionRoleScanningShapesSignal TransductionSolidStimulusStressSurfaceTechniquesTechnologyTestingTimebasebonebone cellcell motilitycell typefluid flowhigh riskin vivomigrationmonolayerneuronal cell bodynovelpublic health relevanceresponseshear stresssrc-Family Kinasestime use
项目摘要
DESCRIPTION (provided by applicant): Osteocytes are three-dimensional (3D) ellipsoidal shaped mature bone cells encased in mineralized extracellular matrix. Abundant evidence has shown that the osteocytes are the key mechanonsensor cells that directly regulate bone-forming osteoblast and bone-removing osteoclast activities. Thus, osteocyte functions are critical to the etiology and treatments of osteoporosis, one of the most challenging health issues in the U.S. The proposed project will develop a pseudo-3 dimensional (3D) real-time microscopy technology to simultaneously visualize cell deformation, actin and microtubule cytoskeleton dynamics, and mechano- signaling activation in real-time using biosensors of osteocyte cells under dynamic fluid flow. The proposed technology also incorporates advanced computational fluid dynamics (CFD)-solid modeling of a cell under fluid flow for the estimation of "real-time" cell viscoelastic properties. Given the dynamic nature of fluid flow, cell deformation, and the timescale of mechanically-induced Src/FAK activation (<0.3 seconds), any imaging technique must have a temporal resolution capable of capturing cell deformation at these timescales. Here, we propose using a real-time "pseudo-3D" technique to image two orthogonal views of a cell simultaneously to greater capture the spatial dynamics of actin and microtubule network deformation, Src or FAK activation, and whole cell mechanical properties of micropatterned, ellipsoidally shaped osteocytes under oscillatory flow. The specific aims of the project are: (1) Simultaneously track and analyze individual cell deformation, actin filament networks, and microtubule networks using pseudo-3D imaging of osteocytes under oscillatory fluid flow and correlate the predicted whole cell mechanical properties with the intracellular actin filament or microtubule network strains and (2) Simultaneously track intracellular actin or microtubule network deformation and Src kinase or FAK activation by fluorescence resonance energy transfer (FRET) biosensors using pseudo-3D imaging of osteocytes under oscillatory fluid flow and correlate the localized biosensor activation with the network strains. This study will have significant impact in the basic science research in the field of bone biology, cellular mechanotransduction, cell adhesion, and the mechanobiology of many adherent cell types.
PUBLIC HEALTH RELEVANCE: This R21 application will develop a real-time "pseudo-3D" microscopy technique to image two orthogonal views of a cell under dynamic fluid flow simultaneously to greater capture the spatial dynamics of cytoskeletal deformation, Src or FAK activation, and whole cell mechanical properties of osteocytes. This enabling technology will have great impact in the general fields of bone biology and cellular mechanics for an increased understanding of the role that physical forces play in bone cell mechanotransduction.
描述(由申请人提供):骨细胞是三维(3D)椭圆形成熟的成熟骨细胞,这些骨细胞包裹在矿化细胞外基质中。大量证据表明,骨细胞是直接调节骨形成成骨细胞和骨骼骨化骨细胞活性的关键机械传感器。因此,骨细胞的功能对骨质疏松症的病因和治疗至关重要,骨质疏松症是美国最具挑战性的健康问题之一,拟议项目将开发一种伪-3维(3D)实时显微镜技术,可同时可视化细胞变形,肌动蛋白和微蛋白细胞骨骼的动态学,并在现象中可视化细胞变形。动态流体流动。提出的技术还结合了流体流动下细胞的高级计算流体动力学(CFD) - 固体建模,以估计“实时”细胞粘弹性性能。鉴于流体流动的动态性质,细胞变形和机械诱导的SRC/FAK激活的时间尺度(<0.3秒),任何成像技术都必须具有能够在这些时间尺度捕获细胞变形的时间分辨率。在这里,我们建议使用实时的“伪3D”技术同时对单元的两种正交视图进行映像,以更好地捕获肌动蛋白和微管网络变形,SRC或FAK激活的空间动力学,以及Micropaterned的全细胞机械性能,椭圆形的,椭圆形的骨化体流动。该项目的具体目的是:(1)同时跟踪和分析单个细胞的变形,肌动蛋白细丝网络和微管网络,使用振荡流体流动下骨细胞的伪成像成像,并将预测的全细胞机械特性与近的胞内纤维纤维纤维纤维细胞或2)相关的整个细胞机械性能(2)相关(2)通过荧光共振能量转移(FRET)生物传感器的变形和SRC激酶或FAK激活,使用振荡流体流动下骨细胞的伪3D成像,并将局部生物传感器激活与网络菌株相关。这项研究将对骨生物学,细胞机械转导,细胞粘附和许多粘附细胞类型的机械生物学领域的基础科学研究产生重大影响。
公共卫生相关性:此R21应用程序将开发一种实时的“伪-3D”显微镜技术,以同时同时在动态流体流下图像一个细胞的两个正交视图,以更好地捕获细胞骨骼变形,SRC或FAK激活,以及整个细胞机械特性的空间动力学。这种启示技术将对骨骼生物学和细胞力学的一般领域产生巨大影响,以增加对物理力在骨细胞机械转导中的作用的了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
X. Edward GUO其他文献
X. Edward GUO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('X. Edward GUO', 18)}}的其他基金
Subchondral Trabecular Plate and Rod Abnormalities in Human Osteoarthritis
人类骨关节炎的软骨下小梁板和杆异常
- 批准号:
10660605 - 财政年份:2023
- 资助金额:
$ 18.17万 - 项目类别:
Clinical Bone Mechanics Using HR-pQCT and ??MRI
使用 HR-pQCT 和 MRI 进行临床骨力学
- 批准号:
8260471 - 财政年份:2010
- 资助金额:
$ 18.17万 - 项目类别:
Clinical Bone Mechanics Using HR-pQCT and ??MRI
使用 HR-pQCT 和 MRI 进行临床骨力学
- 批准号:
7797771 - 财政年份:2010
- 资助金额:
$ 18.17万 - 项目类别:
Pseudo-3D Cytoskeleton Dynamics and Signal Activation in Osteocytes under Flow
流动下骨细胞的伪 3D 细胞骨架动力学和信号激活
- 批准号:
8111836 - 财政年份:2010
- 资助金额:
$ 18.17万 - 项目类别:
Clinical Bone Mechanics Using HR-pQCT and ??MRI
使用 HR-pQCT 和 MRI 进行临床骨力学
- 批准号:
8089447 - 财政年份:2010
- 资助金额:
$ 18.17万 - 项目类别:
Mechanobiology of 3D Trabecular Bone Explants
3D 小梁骨外植体的力学生物学
- 批准号:
8130788 - 财政年份:2009
- 资助金额:
$ 18.17万 - 项目类别:
Mechanobiology of 3D Trabecular Bone Explants
3D 小梁骨外植体的力学生物学
- 批准号:
7808303 - 财政年份:2009
- 资助金额:
$ 18.17万 - 项目类别:
Mechanobiology of 3D Trabecular Bone Explants
3D 小梁骨外植体的力学生物学
- 批准号:
8536208 - 财政年份:2009
- 资助金额:
$ 18.17万 - 项目类别:
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 18.17万 - 项目类别:
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 18.17万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 18.17万 - 项目类别:
hiPSC Modeling of Restrictive Cardiomyopathy for Drug Testing
用于药物测试的限制性心肌病的 hiPSC 模型
- 批准号:
10716393 - 财政年份:2023
- 资助金额:
$ 18.17万 - 项目类别: