Proteomics of Cell Death via 2-D Microfluidic Profiling
通过二维微流控分析进行细胞死亡的蛋白质组学
基本信息
- 批准号:7935869
- 负责人:
- 金额:$ 23.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsApoptosisAutoimmunityAutomationBioinformaticsBiological MarkersBiological ModelsBiotechnologyBlood capillariesCapillary ElectrophoresisCaspaseCell DeathCellsClinicalComparative StudyConfocal MicroscopyCoupledCysteine ProteaseDNA-Binding ProteinsDataData AnalysesDatabasesDefectDepositionDetectionDevelopmentDiseaseDrosophila genusDrosophila melanogasterEmbryoEmbryo DeathsEngineeringEscherichia coliFamilyFluorescenceFluorescence MicroscopyGelGene Expression ProfileGene ProteinsGeneticGenetic TranscriptionGoalsHumanHuman ResourcesImageImage AnalysisIndividualInstitutesInvestigationIsoelectric FocusingIsoelectric PointLaboratoriesLasersLeadLiquid ChromatographyMalignant NeoplasmsManualsMarylandMass Spectrum AnalysisMeasurementMethodologyMethodsMicrofabricationMicrofluidicsModelingModificationMolecular WeightOperative Surgical ProceduresOrganismPathway interactionsPatternPeptide HydrolasesPerformancePhasePhosphorylationPhysiologicalPlasticsPlayPolymersPost-Translational Protein ProcessingProcessProtein FamilyProteinsProteolysisProteomeProteomicsRNAReproducibilityResearchResearch PersonnelResolutionRoleSalivary GlandsSamplingScreening procedureSodium Dodecyl SulfateSpecimenSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationSystemTechnologyTextTimeTwo-Dimensional Polyacrylamide Gel ElectrophoresisUniversitiesValidationVariantWashingtonWorkbasecapillarycell typeclinical applicationcollegeexperiencegel electrophoresisimage processingimprovedinnovationinsightinstrumentationinterestliquid chromatography mass spectrometrymRNA Differential Displaysmeetingsnanofluidicnanoscalenovelprotein expressionprotein profilingprototypesimulationtechnology developmenttoolvirtualweb site
项目摘要
Programmed cell death plays an important role during animal development, and defects in this process result in a variety of human disorders including cancer and autoimmunity. A family of cysteine proteases, called Caspases, are conserved throughout animals and function to dismantle cells during programmed cell death by proteolysis. The goal of this project is to develop, optimize, and apply new multidimensional microfluidics technology for the rapid profiling of protein modifications based on changes in isoelectric point (pi) and molecular weight (MW) during programmed cell death, and identification of modified proteins via mass spectrometry. By using the fruit fly Drosophila melanogaster as a model system, these studies will explore pathways and identify biomarkers associated with Caspase activation during cell death in developing animals which will provide important insight into human cell death pathways. This challenge will be addressed through the development and application of a microfluidic platform capable of ultra-high-throughput multidimensional protein separation, followed by extremely sensitive protein quantification and identification, enabling effective screening of protein modifications. By offering significant reductions in sample requirements, the platforms will also serve to greatly improve the efficiency of Drosophila proteomic studies, and provide important benefits for downstream clinical applications of the technology. The proposed research will couple our team's expertise in programmed cell death studies and bioinformatics with experience in the development of capillary electrophoresis, microfluidic, and mass spectrometry proteomic instrumentation. Dr. DeVoe (Univ. of Maryland) will lead the project as PI, and take responsibility for overall coordination between the personnel and organizations involved in the research. He will be the leader for all activities involving microfabrication, micro and nanofluidics, and system engineering. Dr. Lee (Univ. of Maryland) will direct the activities in protein separation development and mass spectrometry analysis. Dr. Baehrecke (Univ. of Maryland Biotechnology Institute) will lead the investigation of the programmed cell death studies, and analysis of the resulting protein profiling data. Dr. Rudnick (Calibrant Biosystems) will work in concert with Drs. Baehrecke and Lee to develop and apply bioinformatics tools relevant to the programmed cell death studies. Dr. English (Univ. of Maryland) will collaborate with Drs. DeVoe and Lee on the development and implementation of ultrasensitive confocal microscopy systems for nanofluidic separation platforms. Dr. Ivory (Washington State Univ.) will work with Dr. DeVoe to develop electrokinetic simulations to be employed in optimizing the microfluidic separation systems in order to meet the stated performance goals for ultra-high-throughput protein profiling.
程序性细胞死亡在动物发育中起着重要作用,并且在此过程中的缺陷导致各种人类疾病,包括癌症和自身免疫性。一个称为胱天蛋白酶的半胱氨酸蛋白酶家族在整个动物中都是保守的,并且在通过蛋白水解的程序性细胞死亡过程中拆除细胞的功能。该项目的目的是基于在程序性细胞死亡过程中基于等电点(PI)(PI)和分子量(MW)的变化以及通过质谱识别修饰的蛋白质的鉴定,开发,优化和应用新的多维微富集技术来快速分析蛋白质修饰。通过将果蝇果蝇Melanogaster用作模型系统,这些研究将探索途径并确定与细胞死亡期间动物中与胱天蛋白酶激活相关的生物标志物,这将为人类细胞死亡途径提供重要的见解。这项挑战将通过开发和应用能够超高的多维蛋白质分离的微流体平台,然后进行非常敏感的蛋白质定量和鉴定,从而有效筛选蛋白质修饰。通过提供样品需求的显着减少,这些平台还将大大提高果蝇蛋白质组学研究的效率,并为该技术的下游临床应用提供重要好处。 拟议的研究将使我们的团队在程序性细胞死亡研究和生物信息学方面的专业知识与毛细管电泳,微流体和质谱蛋白质组学仪器的发展经验。 Devoe博士(马里兰州大学)将领导该项目作为PI,并对参与研究的人员和组织之间的整体协调负责。他将成为所有涉及微型制造,微流体和系统工程的活动的领导者。 Lee(马里兰州大学)将指导蛋白质分离发育和质谱分析的活动。 Baehrecke博士(马里兰州生物技术研究所)将领导对程序性细胞死亡研究的研究,并分析所得的蛋白质分析数据。 Rudnick博士(校准生物系统)将与Drs一起合作。 Baehrecke和Lee开发和应用与程序性细胞死亡研究相关的生物信息学工具。英语博士(马里兰州)将与博士合作。 Devoe和Lee关于用于纳米流体分离平台的超敏共聚焦显微镜系统的开发和实施。 Ivory博士(华盛顿州立大学)将与Devoe博士合作开发电动模拟,以优化微流体分离系统,以实现超高通量蛋白质分析的既定性能目标。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimization of sample transfer in two-dimensional microfluidic separation systems.
二维微流体分离系统中样品传输的优化。
- DOI:10.1039/b801978a
- 发表时间:2008
- 期刊:
- 影响因子:6.1
- 作者:Yang,Shuang;Liu,Jikun;DeVoe,DonL
- 通讯作者:DeVoe,DonL
Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA.
- DOI:10.1039/b511766f
- 发表时间:2006-12
- 期刊:
- 影响因子:6.1
- 作者:Likun Zhu;Cheng S. Lee;D. DeVoe
- 通讯作者:Likun Zhu;Cheng S. Lee;D. DeVoe
Flow-through immunosensors using antibody-immobilized polymer monoliths.
- DOI:10.1016/j.bios.2010.06.007
- 发表时间:2010-09-15
- 期刊:
- 影响因子:12.6
- 作者:Liu J;Chen CF;Chang CW;DeVoe DL
- 通讯作者:DeVoe DL
Nanofilament silicon for matrix-free laser desorption/ionization mass spectrometry.
用于无基质激光解吸/电离质谱分析的纳米丝硅。
- DOI:10.1007/978-1-61779-319-6_14
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Tsao,Chia-Wen;Devoe,DonL
- 通讯作者:Devoe,DonL
Dynamic electrowetting on nanofilament silicon for matrix-free laser desorption/ionization mass spectrometry.
纳米丝硅上的动态电润湿用于无基质激光解吸/电离质谱分析。
- DOI:10.1021/ac7026029
- 发表时间:2008
- 期刊:
- 影响因子:7.4
- 作者:Tsao,Chia-Wen;Kumar,Parshant;Liu,Jikun;DeVoe,DonL
- 通讯作者:DeVoe,DonL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Don L DeVoe其他文献
Don L DeVoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Don L DeVoe', 18)}}的其他基金
Elucidating Airborne SARS-CoV-2 Infectivity at Single Aerosol Resolution
在单一气溶胶分辨率下阐明空气传播的 SARS-CoV-2 感染性
- 批准号:
10239915 - 财政年份:2022
- 资助金额:
$ 23.65万 - 项目类别:
Microcyclone arrays for high resolution bioaerosol fractionation and viable virus collection
用于高分辨率生物气溶胶分级和活病毒收集的微旋风阵列
- 批准号:
10593436 - 财政年份:2022
- 资助金额:
$ 23.65万 - 项目类别:
Nanohydrocyclones for scalable extracellular vesicle purification and drug loading
用于可扩展细胞外囊泡纯化和药物装载的纳米水力旋流器
- 批准号:
10458751 - 财政年份:2021
- 资助金额:
$ 23.65万 - 项目类别:
A rapid, automated system for bacteria profiling of intra-abdominal infections
一种快速、自动化的腹内感染细菌分析系统
- 批准号:
10535472 - 财政年份:2021
- 资助金额:
$ 23.65万 - 项目类别:
Nanohydrocyclones for scalable extracellular vesicle purification and drug loading
用于可扩展细胞外囊泡纯化和药物装载的纳米水力旋流器
- 批准号:
10288742 - 财政年份:2021
- 资助金额:
$ 23.65万 - 项目类别:
A rapid, automated system for bacteria profiling of intra-abdominal infections
一种快速、自动化的腹内感染细菌分析系统
- 批准号:
10211909 - 财政年份:2021
- 资助金额:
$ 23.65万 - 项目类别:
Enabling exosome biomarker development via digitized single vesicle analysis
通过数字化单囊泡分析实现外泌体生物标志物的开发
- 批准号:
10359052 - 财政年份:2019
- 资助金额:
$ 23.65万 - 项目类别:
相似国自然基金
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
利用可视可控hypocretin神经元凋亡的疾病模型进行发作性睡病发病机制研究
- 批准号:81901346
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
组织器官衰老致退行性演变多示踪剂全身动态PET显像研究
- 批准号:91949121
- 批准年份:2019
- 资助金额:68.0 万元
- 项目类别:重大研究计划
日粮AFB1在反刍动物肝脏中代谢激活和诱导肝细胞凋亡的分子机理研究
- 批准号:31902187
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
阿司匹林丁香酚酯抗氧化应激致血管内皮细胞凋亡的分子机制
- 批准号:31872518
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 23.65万 - 项目类别:
REVAMP-PH: REpurposing Valsartan May Protect against Pulmonary Hypertension
REVAMP-PH:重新利用缬沙坦可以预防肺动脉高压
- 批准号:
10642368 - 财政年份:2023
- 资助金额:
$ 23.65万 - 项目类别:
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
- 批准号:
10677394 - 财政年份:2023
- 资助金额:
$ 23.65万 - 项目类别:
Mining host-microbe interactions in the neonatal pancreas to combat diabetes
挖掘新生儿胰腺中宿主-微生物的相互作用来对抗糖尿病
- 批准号:
10664448 - 财政年份:2023
- 资助金额:
$ 23.65万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 23.65万 - 项目类别: