Computational prediction of RNA 3D structure using low resolution data and a new
使用低分辨率数据和新方法计算预测 RNA 3D 结构
基本信息
- 批准号:7888537
- 负责人:
- 金额:$ 20.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdoptedAlgorithmsAnimal ModelBackBase PairingBindingBinding ProteinsBiologicalBiological AssayBiomedical ResearchCell Culture TechniquesCellsCharacteristicsComputer SimulationDataDevelopmentDiseaseFunctional RNAFunctional disorderGene ExpressionGene Expression RegulationGene SilencingGene Silencing PathwayGene TargetingGenesGeneticHandHeartHumanInterventionLaboratoriesLifeLigandsMalignant NeoplasmsMessenger RNAMethodsMetricMicroRNAsModelingMolecularMolecular ConformationMutationNMR SpectroscopyNatureNucleotidesOncogene DeregulationOrganismPatternPlayPredictive ValueProcessPropertyProtein BindingProteinsProtocols documentationRNARNA ComputerRNA FoldingRNA SequencesReactionRelianceReporterRepressionResearchResearch PersonnelResolutionRibonucleotidesRoleSecuritySiteSmall RNAStructureTechniquesTherapeuticVirusX-Ray Crystallographybasecofactorcomputerized toolscopingfightinggene discoveryinsightprogramspublic health relevanceresearch studythree dimensional structuretooltumor
项目摘要
DESCRIPTION (provided by applicant): Nature has developed mechanisms to protect living organisms against external intruders such as viruses, or internal dysfunction leading to diseases, such as cancer. One such security mechanism is gene silencing, which is at the heart of organisms< development and speciation. In particular, gene silencing is widely used to study human and model organisms' genetics. Increasing evidence suggests that diseases such as cancer are the result of multiple gene deregulations. A normal cellular reaction would be to shutting down these genes. However, in the case of diseases such as cancer, for unknown reasons the cell is unable to cope with the situation, leading to tumor development and progression. We need to understand better gene silencing mechanisms if we wish to discover why the cell cannot defends itself in these situations, or if we want to intervene efficiently in gene silencing to fight these diseases. Gene silencing is based on a class of ribonucleic acids called microRNAs. One of the aims of this research is to study the molecular basis of these microRNAs, and in particular the mechanism by which they bind the messenger RNAs of targeted genes. Predicting accurately the targeted genes of microRNAs is among the most important unresolved questions of gene silencing at this moment. Many in the field are hindered by their over-reliance on the secondary structures of ribonucleotide chains, which severely limits the usefulness and predictive value of the current computational models. Ribonucleotide chains' function is rather due to their tertiary structure. This is why it is crucial for all laboratories currently engaged in research on RNAs and microRNAs that modeling programs capable of rapidly and accurately producing RNA tertiary structures with atomic precision become available. In this research, I propose the development and application of an RNA computer-modeling framework that builds upon the one I developed over the last 20 years to obtain high-resolution tertiary structures of microRNAs and targeted messenger RNAs. These tertiary structures will help us get insights into how and where microRNAs bind their targets, and prepare biological assays to confirm these insights. We aim to put these new powerful tools in the hands of the experimentalists, since rapidly and reliably producing RNA structures will yield immense benefits to the biomedical field's ability to understand and experiment with these recently discovered gene-silencing pathways.
PUBLIC HEALTH RELEVANCE: Accumulating evidence shows that RNA molecules are crucial players in the mechanisms that protect us against external intruders such as viruses, or internal dysfunction that leads to diseases. Determining RNA three-dimensional (3D) structures is key to study RNA function, but is costly and laborious using physical methods. In many ways, this situation hinders the RNA biomedical field, and the research here aims at providing to all computational tools to rapidly and reliably producing RNA 3D structures, yielding immense benefits to the researchers' ability to understand and manipulate RNAs including those in our own protection mechanisms.
描述(由申请人提供):大自然已经发展出保护生物体免受外部入侵者(如病毒)或导致疾病(如癌症)的内部功能障碍的机制。其中一种安全机制是基因沉默,它是生物体发育和物种形成的核心。特别是,基因沉默被广泛用于研究人类和模式生物的遗传学。越来越多的证据表明,癌症等疾病是多种基因失调的结果。正常的细胞反应应该是关闭这些基因。然而,在癌症等疾病的情况下,由于未知的原因,细胞无法应对这种情况,导致肿瘤的发展和进展。如果我们希望发现为什么细胞在这些情况下不能保护自己,或者如果我们想有效地干预基因沉默以对抗这些疾病,我们需要更好地理解基因沉默机制。基因沉默是基于一类被称为微rna的核糖核酸。本研究的目的之一是研究这些microrna的分子基础,特别是它们与靶基因的信使rna结合的机制。准确预测microrna的靶基因是目前基因沉默最重要的未解决问题之一。该领域的许多研究由于过度依赖核糖核苷酸链的二级结构而受到阻碍,这严重限制了当前计算模型的有用性和预测价值。核糖核苷酸链的功能主要取决于它们的三级结构。这就是为什么对于目前从事RNA和microrna研究的所有实验室来说,能够快速准确地以原子精度生成RNA三级结构的建模程序是至关重要的。在这项研究中,我建议开发和应用RNA计算机建模框架,该框架建立在我过去20年开发的基础上,以获得microRNAs和靶向信使RNA的高分辨率三级结构。这些三级结构将帮助我们了解microrna如何以及在哪里结合它们的靶标,并准备生物分析来证实这些见解。我们的目标是将这些强大的新工具交到实验人员手中,因为快速可靠地生产RNA结构将对生物医学领域理解和实验这些最近发现的基因沉默途径的能力产生巨大的好处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francois MAJOR其他文献
Francois MAJOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francois MAJOR', 18)}}的其他基金
Computational prediction of RNA 3D structure using low resolution data and a new
使用低分辨率数据和新方法计算预测 RNA 3D 结构
- 批准号:
8484795 - 财政年份:2010
- 资助金额:
$ 20.31万 - 项目类别:
Computational prediction of RNA 3D structure using low resolution data and a new
使用低分辨率数据和新方法计算预测 RNA 3D 结构
- 批准号:
8665971 - 财政年份:2010
- 资助金额:
$ 20.31万 - 项目类别:
Computational prediction of RNA 3D structure using low resolution data and a new
使用低分辨率数据和新方法计算预测 RNA 3D 结构
- 批准号:
8290972 - 财政年份:2010
- 资助金额:
$ 20.31万 - 项目类别:
Computational prediction of RNA 3D structure using low resolution data and a new
使用低分辨率数据和新方法计算预测 RNA 3D 结构
- 批准号:
8078978 - 财政年份:2010
- 资助金额:
$ 20.31万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 20.31万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 20.31万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 20.31万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 20.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 20.31万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 20.31万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 20.31万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 20.31万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 20.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 20.31万 - 项目类别:
Research Fellowships














{{item.name}}会员




