Development of a Synaptic ATP Reporter
突触 ATP 报告基因的开发
基本信息
- 批准号:7977318
- 负责人:
- 金额:$ 24.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:Access to InformationAction PotentialsAreaArtsBackBiologicalBrainCalibrationCell membraneCellsChemical SynapseChemicalsCommunicationCoupledDendritesDetectionDevelopmentDiseaseEnergy SupplyEnsureEventFluorescenceFunctional disorderFutureGene MutationGenerationsGlycolysisGoalsHippocampus (Brain)HumanImageIndividualIon PumpsIonsLearningLifeLinkLipidsLocationLuciferasesMeasuresMediatingMembraneMembrane Protein TrafficMemoryMetabolicMetabolismMethodologyMigraineMitochondriaMolecularNerveNeurodegenerative DisordersNeuronsNeurotransmittersNoiseOutputOxidative PhosphorylationParkinson DiseasePostsynaptic MembraneProcessProteinsProtocols documentationPumpRegulationReporterRestRodentRoleSchizophreniaSignal TransductionSiteSourceSynapsesSynaptic VesiclesSynaptophysinTechniquesTechnologyTestingTimeVariantVesicleWorkionic balanceluminescencemeetingsmitochondrial dysfunctionmutantnervous system disorderneuronal cell bodypostsynapticpresynapticpublic health relevanceresponsesuccesssynaptic functiontool
项目摘要
DESCRIPTION (provided by applicant): Synapses represent key transduction machines that convert incoming electrical information in the form of action potentials into a secreted chemical message which in turn is converted back into a postsynaptic electrical response. The orchestration of these events is thought to underlie critical mechanisms of learning and memory, and dysfunction of synaptic communication is suspected to be central in a number of diseased states of brain function. Synapses however are located at significant distances from cell bodies, and the highly-localized cell biological machinery must rely on local sources of ATP for function. In addition to the ion pumps that are present on both pre and postsynaptic membranes that work to restore ionic balance following activity both compartments contain high concentrations of proteins that must consume ATP in their role carrying out signal transduction, as well as key membrane trafficking events delivering and retrieving proteins and lipids to and from the plasma membrane. Because of these high energy needs, a large fraction of nerve terminals and postsynaptic dendrites are endowed with local mitochondria. Little is known however about intracellular ATP concentrations at these sites, how these concentrations are impacted by synaptic activity, how metabolic needs are coupled to activity, how the presence of local mitochondria impacts local ATP levels, or the extent to which local synaptic ATP generation relies on glycolysis versus oxidative phosphorylation. A local direct reporter of ATP levels is required to access this information. Given that mitochondrial dysfunction has been implicated in a number of neurodegenerative diseases, the ability to directly measure ATP concentration dynamics at individual nerve terminals will be valuable for examining ATP metabolism in these diseased states as well. Here we propose to develop imaging methodology to help fill this information gap. Our approach will be to develop a combined chemo-luminescence and fluorescence approach in the form of a genetically encoded and synaptically targeted ATP indicator that will provide calibrated, dynamic, intracellular synaptic ATP concentration profiles in living nerve terminals.
PUBLIC HEALTH RELEVANCE: Information flow in the brain is mediated by transduction of electrical information into chemical information and back again at chemical synapses. The functioning of the human brain relies on the careful orchestration of delivering neurotransmitter-laden vesicles to sites at nerve terminals where they can be used to deliver this chemical message on demand. Many known genetic mutations in diseases such as Parkinson's disease, migraine headache and schizophrenia are linked to proteins that control synapse function. Our work is aimed at understanding the machinery at a molecular level to better ensure the success of future therapies for these types of neuronal diseases. Here we are proposing to develop technologies that will allow us to examine how synapses regulate their energy supply, which is thought to be a critical area of malfunction in certain neurological diseases.
描述(由申请人提供):突触代表关键的转导机,这些计算机以动作电位的形式将传入的电气信息转换为分泌的化学消息,然后将其转换回突触后电响应。这些事件的编排被认为是学习和记忆的关键机制的基础,而突触交流功能障碍被怀疑在许多脑功能的患病状态中是核心。然而,突触位于与细胞体的显着距离,高度定位的细胞生物机械必须依靠ATP的局部来源来进行功能。除了在活动前和突触后膜上存在的离子泵外,这两个隔室都恢复了离子平衡,还包含高浓度的蛋白质,这些蛋白质必须消耗ATP,这些蛋白质必须在信号转导的角色中消耗ATP,以及进行关键的膜运输事件,从而将蛋白质和蛋白质和lipids和lipids带到铂和含量。由于这些高能量的需求,很大一部分神经末端和突触后树突有局部线粒体。然而,对于这些位点的细胞内ATP浓度,这些浓度如何受到突触活动的影响,代谢需求如何与活性耦合,局部线粒体的存在如何影响局部ATP水平以及局部突触ATP ATP的局部突触ATP生成有关糖化与氧化磷酸化的程度。访问此信息需要ATP级别的本地直接记者。鉴于线粒体功能障碍已与许多神经退行性疾病有关,因此直接测量单个神经终末ATP浓度动力学的能力对于检查这些患病状态的ATP代谢也很有价值。在这里,我们建议开发成像方法,以帮助填补此信息空白。我们的方法是以遗传编码和突触靶向的ATP指标的形式开发合并的化学致发光和荧光方法,该指标将在活神经末端提供校准,动态的,动态的,细胞内的突触ATP浓度。
公共卫生相关性:大脑中的信息流是通过将电气信息转移到化学信息中并在化学突触中再次返回来介导的。人脑的功能依赖于将载有神经递质囊泡传递到神经末端的位点的仔细编排,可用于按需传递该化学信息。帕金森氏病,偏头痛和精神分裂症等疾病中许多已知的遗传突变与控制突触功能的蛋白质有关。我们的工作旨在理解分子水平的机械,以更好地确保这些类型的神经元疾病的未来疗法的成功。在这里,我们提议开发技术,使我们能够研究突触如何调节其能源供应,这被认为是某些神经系统疾病的关键领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Aidan Ryan其他文献
Timothy Aidan Ryan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Aidan Ryan', 18)}}的其他基金
Metabolic Vulnerability of Synapses in Neurodegenerative Disease
神经退行性疾病中突触的代谢脆弱性
- 批准号:
10578785 - 财政年份:2020
- 资助金额:
$ 24.94万 - 项目类别:
Metabolic Vulnerability of Synapses in Neurodegenerative Disease
神经退行性疾病中突触的代谢脆弱性
- 批准号:
10365919 - 财政年份:2020
- 资助金额:
$ 24.94万 - 项目类别:
Identification of synaptic alpha2delta binding partners
突触 alpha2delta 结合伙伴的鉴定
- 批准号:
8660359 - 财政年份:2013
- 资助金额:
$ 24.94万 - 项目类别:
Identification of synaptic alpha2delta binding partners
突触 alpha2delta 结合伙伴的鉴定
- 批准号:
8597614 - 财政年份:2013
- 资助金额:
$ 24.94万 - 项目类别:
Quantitative Mapping of Molecules and Release Properties at Nerve Terminals
神经末梢分子和释放特性的定量图谱
- 批准号:
7781100 - 财政年份:2009
- 资助金额:
$ 24.94万 - 项目类别:
Quantitative mapping of molecules and release properties at nerve terminals
神经末梢分子和释放特性的定量图谱
- 批准号:
8825287 - 财政年份:2009
- 资助金额:
$ 24.94万 - 项目类别:
Quantitative Mapping of Molecules and Release Properties at Nerve Terminals
神经末梢分子和释放特性的定量图谱
- 批准号:
8586902 - 财政年份:2009
- 资助金额:
$ 24.94万 - 项目类别:
Quantitative Mapping of Molecules and Release Properties at Nerve Terminals
神经末梢分子和释放特性的定量图谱
- 批准号:
8389677 - 财政年份:2009
- 资助金额:
$ 24.94万 - 项目类别:
Quantitative Mapping of Molecules and Release Properties at Nerve Terminals
神经末梢分子和释放特性的定量图谱
- 批准号:
8196919 - 财政年份:2009
- 资助金额:
$ 24.94万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterizing the functional heterogeneity of the mouse paralaminar nucleus
表征小鼠板旁核的功能异质性
- 批准号:
10678525 - 财政年份:2023
- 资助金额:
$ 24.94万 - 项目类别:
Spatial and Single Cell Transcriptomics Approach to Understand Neuron-Oligodendrocyte Communication in Human Synaptic Development
了解人类突触发育中神经元-少突胶质细胞通讯的空间和单细胞转录组学方法
- 批准号:
10646970 - 财政年份:2023
- 资助金额:
$ 24.94万 - 项目类别:
Cellular Basis for Autonomic Regulation of Cardiac Arrhythmias
心律失常自主调节的细胞基础
- 批准号:
10627578 - 财政年份:2023
- 资助金额:
$ 24.94万 - 项目类别:
An Autonomous Rapidly Adaptive Multiphoton Microscope for Neural Recording and Stimulation
用于神经记录和刺激的自主快速自适应多光子显微镜
- 批准号:
10739050 - 财政年份:2023
- 资助金额:
$ 24.94万 - 项目类别: