Development of a Synaptic ATP Reporter
突触 ATP 报告基因的开发
基本信息
- 批准号:8066969
- 负责人:
- 金额:$ 20.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:Access to InformationAction PotentialsAreaBackBiologicalBrainCalibrationCell membraneCellsChemical SynapseChemicalsCommunicationCoupledDendritesDetectionDevelopmentDiseaseEnergy SupplyEnsureEventFluorescenceFunctional disorderFutureGene MutationGenerationsGlycolysisGoalsHealthHippocampus (Brain)HumanImageIndividualIon PumpsIonsLearningLifeLinkLipidsLocationLuciferasesMeasuresMediatingMembraneMembrane Protein TrafficMemoryMetabolicMetabolismMethodologyMigraineMitochondriaMolecularNerveNeurodegenerative DisordersNeuronsNeurotransmittersNoiseOutputOxidative PhosphorylationParkinson DiseasePostsynaptic MembraneProcessProteinsProtocols documentationPumpRegulationReporterRestRodentRoleSchizophreniaSignal TransductionSiteSourceSynapsesSynaptic VesiclesSynaptophysinTechniquesTechnologyTestingTimeVariantVesicleWorkionic balanceluminescencemeetingsmitochondrial dysfunctionmutantnervous system disorderneuronal cell bodypostsynapticpresynapticresponsesuccesssynaptic functiontool
项目摘要
DESCRIPTION (provided by applicant): Synapses represent key transduction machines that convert incoming electrical information in the form of action potentials into a secreted chemical message which in turn is converted back into a postsynaptic electrical response. The orchestration of these events is thought to underlie critical mechanisms of learning and memory, and dysfunction of synaptic communication is suspected to be central in a number of diseased states of brain function. Synapses however are located at significant distances from cell bodies, and the highly-localized cell biological machinery must rely on local sources of ATP for function. In addition to the ion pumps that are present on both pre and postsynaptic membranes that work to restore ionic balance following activity both compartments contain high concentrations of proteins that must consume ATP in their role carrying out signal transduction, as well as key membrane trafficking events delivering and retrieving proteins and lipids to and from the plasma membrane. Because of these high energy needs, a large fraction of nerve terminals and postsynaptic dendrites are endowed with local mitochondria. Little is known however about intracellular ATP concentrations at these sites, how these concentrations are impacted by synaptic activity, how metabolic needs are coupled to activity, how the presence of local mitochondria impacts local ATP levels, or the extent to which local synaptic ATP generation relies on glycolysis versus oxidative phosphorylation. A local direct reporter of ATP levels is required to access this information. Given that mitochondrial dysfunction has been implicated in a number of neurodegenerative diseases, the ability to directly measure ATP concentration dynamics at individual nerve terminals will be valuable for examining ATP metabolism in these diseased states as well. Here we propose to develop imaging methodology to help fill this information gap. Our approach will be to develop a combined chemo-luminescence and fluorescence approach in the form of a genetically encoded and synaptically targeted ATP indicator that will provide calibrated, dynamic, intracellular synaptic ATP concentration profiles in living nerve terminals.
PUBLIC HEALTH RELEVANCE: Information flow in the brain is mediated by transduction of electrical information into chemical information and back again at chemical synapses. The functioning of the human brain relies on the careful orchestration of delivering neurotransmitter-laden vesicles to sites at nerve terminals where they can be used to deliver this chemical message on demand. Many known genetic mutations in diseases such as Parkinson's disease, migraine headache and schizophrenia are linked to proteins that control synapse function. Our work is aimed at understanding the machinery at a molecular level to better ensure the success of future therapies for these types of neuronal diseases. Here we are proposing to develop technologies that will allow us to examine how synapses regulate their energy supply, which is thought to be a critical area of malfunction in certain neurological diseases.
描述(申请人提供):突触代表关键的转导机器,它将以动作电位形式输入的电信息转换为分泌的化学信息,然后再转换回突触后的电反应。这些事件的协调被认为是学习和记忆的关键机制的基础,突触通信功能障碍被怀疑是大脑功能的一些疾病状态的中心。然而,突触位于距离细胞体很远的地方,高度局部化的细胞生物机制必须依赖当地的ATP来源才能发挥作用。除了突触前膜和突触后膜上存在的离子泵在活动后恢复离子平衡之外,两个隔室都含有高浓度的蛋白质,这些蛋白质在执行信号转导的过程中必须消耗ATP,以及关键的膜运输事件,向质膜运送和从质膜回收蛋白质和脂类。由于这些高能量需求,很大一部分神经末梢和突触后树突被赋予了局部线粒体。然而,对于这些部位的细胞内ATP浓度,这些浓度是如何受到突触活动的影响,代谢需求如何与活动相结合,局部线粒体的存在如何影响局部ATP水平,或者局部突触ATP的产生在多大程度上依赖于糖酵解而不是氧化磷酸化,人们知之甚少。需要一名当地的ATP水平的直接记者才能访问此信息。鉴于线粒体功能障碍与许多神经退行性疾病有关,直接测量单个神经末梢的ATP浓度动态变化对于检查这些疾病状态下的ATP代谢也将是有价值的。在这里,我们建议开发成像方法来帮助填补这一信息空白。我们的方法是开发一种化学发光和荧光相结合的方法,以遗传编码和突触靶向的ATP指示剂的形式,提供活神经末梢中校准的、动态的、细胞内突触ATP浓度分布。
与公共健康相关:大脑中的信息流是通过将电子信息转化为化学信息并在化学突触上再传递回来的。人脑的功能依赖于精心编排,将神经递质满载的囊泡输送到神经末梢的位置,在那里它们可以根据需要传递这种化学信息。许多已知的帕金森氏病、偏头痛和精神分裂症等疾病的基因突变与控制突触功能的蛋白质有关。我们的工作旨在从分子水平上了解这一机制,以更好地确保未来对这些类型的神经元疾病的治疗取得成功。在这里,我们建议开发技术,使我们能够检查突触如何调节其能量供应,这被认为是某些神经疾病的一个关键功能障碍领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Aidan Ryan其他文献
Timothy Aidan Ryan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Aidan Ryan', 18)}}的其他基金
Metabolic Vulnerability of Synapses in Neurodegenerative Disease
神经退行性疾病中突触的代谢脆弱性
- 批准号:
10578785 - 财政年份:2020
- 资助金额:
$ 20.29万 - 项目类别:
Metabolic Vulnerability of Synapses in Neurodegenerative Disease
神经退行性疾病中突触的代谢脆弱性
- 批准号:
10365919 - 财政年份:2020
- 资助金额:
$ 20.29万 - 项目类别:
Identification of synaptic alpha2delta binding partners
突触 alpha2delta 结合伙伴的鉴定
- 批准号:
8660359 - 财政年份:2013
- 资助金额:
$ 20.29万 - 项目类别:
Identification of synaptic alpha2delta binding partners
突触 alpha2delta 结合伙伴的鉴定
- 批准号:
8597614 - 财政年份:2013
- 资助金额:
$ 20.29万 - 项目类别:
Quantitative Mapping of Molecules and Release Properties at Nerve Terminals
神经末梢分子和释放特性的定量图谱
- 批准号:
7781100 - 财政年份:2009
- 资助金额:
$ 20.29万 - 项目类别:
Quantitative mapping of molecules and release properties at nerve terminals
神经末梢分子和释放特性的定量图谱
- 批准号:
8825287 - 财政年份:2009
- 资助金额:
$ 20.29万 - 项目类别:
Quantitative Mapping of Molecules and Release Properties at Nerve Terminals
神经末梢分子和释放特性的定量图谱
- 批准号:
8586902 - 财政年份:2009
- 资助金额:
$ 20.29万 - 项目类别:
Quantitative Mapping of Molecules and Release Properties at Nerve Terminals
神经末梢分子和释放特性的定量图谱
- 批准号:
8389677 - 财政年份:2009
- 资助金额:
$ 20.29万 - 项目类别:
Quantitative Mapping of Molecules and Release Properties at Nerve Terminals
神经末梢分子和释放特性的定量图谱
- 批准号:
8196919 - 财政年份:2009
- 资助金额:
$ 20.29万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 20.29万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 20.29万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 20.29万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 20.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 20.29万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 20.29万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 20.29万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 20.29万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 20.29万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 20.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)