Mechanisms of cellular osmosensing and osmotic stress induced damage repair

细胞渗透感应和渗透应激诱导损伤修复的机制

基本信息

  • 批准号:
    7791693
  • 负责人:
  • 金额:
    $ 44.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-01 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Cellular osmotic homeostasis is a fundamental requirement for life. All cells are exposed to osmotic challenges brought about by changes in intracellular solute flux and/or perturbations in extracellular osmolality. Most mammalian cells are protected from extracellular osmotic challenges by the kidney, which tightly regulates blood ionic and osmotic concentrations. Renal medullary cells are an important exception to this generalization and are subjected normally to extreme osmotic stress by the renal concentrating mechanism. Cells maintain osmotic homeostasis by the tightly regulated gain and loss of salt and organic solutes termed organic osmolytes, and by detecting and repairing osmotic stress induced damage. The transport and metabolic pathways that mediate animal cell osmoregulatory solute fluxes are well described. However, little is known about the signaling mechanisms by which animal cells detect osmotic perturbations, about the types of cellular and molecular damage induced by osmotic stress, and about how this damage is detected, repaired and prevented. DK61168 supported studies developed the nematode C. elegans as a novel genetically tractable model system for defining fundamental mechanisms of animal cell osmosensing and osmotic homeostasis. During the previous funding period, we made the novel observation that disruption of protein synthesis activates expression of genes required for organic osmolyte accumulation. We also demonstrated for the first time that hypertonicity causes rapid and extensive protein damage in vivo and that genes required for protein degradation are essential for survival during hypertonic stress. The current proposal builds on these new findings and addresses three questions with broad biological and pathophysiological significance. How does disruption of protein synthesis activate osmosensitive gene expression? What are the quality control mechanisms utilized by cells to detect, degrade and repair proteins damaged by hypertonic stress? What are the mechanisms by which acclimation to hypertonic stress suppresses hypertonicity induced protein damage? We will utilize a combination of cell biological, molecular and biochemical approaches to provide the first detailed characterization of hypertonic stress induced protein damage and the mechanisms that cells employ to cope with and prevent this damage. We will also exploit the genetic tractability of C. elegans and begin to define the signals and signaling pathways that regulate expression of genes required for survival in hypertonic environments. Our work will provide novel insights into cellular osmosensing and signal transduction and into the mechanisms that protect hypertonically stressed cells from protein damage and associated injury and death. Detailed understanding of hypertonicity induced signaling, cell injury and protein damage is essential for understanding renal physiology and pathophysiology, and is directly relevant to understanding pathophysiology associated with aging and numerous inherited diseases. Public Health Relevance: Cellular osmotic homeostasis is a fundamental requirement for life. Studies described in this application will define the signals and signaling pathways that regulate expression of genes required for survival of cells in hypertonic environments and will provide the first detailed characterization of hypertonic stress induced protein damage and the mechanisms that cells employ to cope with and prevent this damage. Detailed understanding of osmotic stress induced signaling, cell injury and protein damage is essential for understanding renal physiology and pathophysiology, and is directly relevant to understanding pathophysiology associated with aging and numerous inherited diseases.
描述(由申请人提供):细胞渗透稳态是生命的基本要求。所有细胞都暴露于由细胞内溶质通量变化和/或细胞外渗透压摩尔浓度扰动引起的渗透压挑战。大多数哺乳动物细胞受到肾脏的保护,免受细胞外渗透的挑战,肾脏严格调节血液离子和渗透浓度。肾髓质细胞是这一概括的一个重要例外,通常受到肾脏浓缩机制的极端渗透压。细胞通过严格调节盐和有机溶质(称为有机渗透压物质)的获得和损失,以及通过检测和修复渗透胁迫诱导的损伤来维持渗透稳态。运输和代谢途径,介导动物细胞膜调节溶质通量的描述。然而,动物细胞检测渗透扰动的信号机制,渗透胁迫诱导的细胞和分子损伤的类型,以及这种损伤是如何检测,修复和预防的知之甚少。DK 61168支持开发线虫C. elegans作为一种新的遗传上易处理的模型系统,用于定义动物细胞渗透敏感和渗透稳态的基本机制。在上一个资助期间,我们进行了新的观察,即蛋白质合成的破坏激活了有机渗透剂积累所需的基因表达。我们还首次证明了高渗在体内引起快速和广泛的蛋白质损伤,并且蛋白质降解所需的基因对高渗应激期间的生存至关重要。目前的建议建立在这些新发现的基础上,并解决了三个具有广泛生物学和病理生理学意义的问题。蛋白质合成的中断如何激活对蛋白质敏感的基因表达?细胞利用什么样的质量控制机制来检测、降解和修复被高渗应激损伤的蛋白质?高渗应激抑制高渗诱导的蛋白质损伤的机制是什么?我们将利用细胞生物学,分子和生物化学方法的组合,以提供高渗应激诱导的蛋白质损伤的第一个详细的表征和细胞用来科普和防止这种损伤的机制。我们还将利用C. elegans和开始定义调节在高渗环境中生存所需的基因表达的信号和信号通路。我们的工作将提供新的见解,细胞膜感应和信号转导,并进入机制,保护高渗应激细胞蛋白质损伤和相关的损伤和死亡。详细了解高渗诱导的信号传导、细胞损伤和蛋白质损伤对于理解肾脏生理学和病理生理学是必不可少的,并且与理解与衰老和许多遗传性疾病相关的病理生理学直接相关。 公共卫生相关性:细胞渗透稳态是生命的基本要求。本申请中描述的研究将定义调节细胞在高渗环境中存活所需的基因表达的信号和信号传导途径,并将提供高渗应激诱导的蛋白质损伤的第一个详细表征以及细胞用于科普和预防这种损伤的机制。详细了解渗透压诱导的信号传导、细胞损伤和蛋白质损伤对于理解肾脏生理学和病理生理学是必不可少的,并且与理解与衰老和许多遗传性疾病相关的病理生理学直接相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KEVIN STRANGE其他文献

KEVIN STRANGE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KEVIN STRANGE', 18)}}的其他基金

Comparative Biology of Tissue Repair, Regeneration and Aging
组织修复、再生和衰老的比较生物学
  • 批准号:
    8728957
  • 财政年份:
    2013
  • 资助金额:
    $ 44.4万
  • 项目类别:
Comparative Biology of Tissue Repair, Regeneration and Aging
组织修复、再生和衰老的比较生物学
  • 批准号:
    8432228
  • 财政年份:
    2013
  • 资助金额:
    $ 44.4万
  • 项目类别:
Comparative Biology of Tissue Repair, Regeneration and Aging
组织修复、再生和衰老的比较生物学
  • 批准号:
    9276035
  • 财政年份:
    2013
  • 资助金额:
    $ 44.4万
  • 项目类别:
A high throughput screen for inhibitors of nematode detoxification genes
线虫解毒基因抑制剂的高通量筛选
  • 批准号:
    8000247
  • 财政年份:
    2009
  • 资助金额:
    $ 44.4万
  • 项目类别:
A high throughput screen for inhibitors of nematode detoxification genes
线虫解毒基因抑制剂的高通量筛选
  • 批准号:
    8423887
  • 财政年份:
    2009
  • 资助金额:
    $ 44.4万
  • 项目类别:
Oscillatory Ca2 signaling in the C. elegans intestine
线虫肠道中的振荡 Ca2 信号传导
  • 批准号:
    7039351
  • 财政年份:
    2006
  • 资助金额:
    $ 44.4万
  • 项目类别:
Oscillatory Ca2 signaling in the C. elegans intestine
线虫肠道中的振荡 Ca2 信号传导
  • 批准号:
    8012222
  • 财政年份:
    2006
  • 资助金额:
    $ 44.4万
  • 项目类别:
Oscillatory Ca2+ signaling in the C.elegans intestine
线虫肠道中的振荡 Ca2 信号传导
  • 批准号:
    7429829
  • 财政年份:
    2006
  • 资助金额:
    $ 44.4万
  • 项目类别:
Oscillatory Ca2+ signaling in the C.elegans intestine
线虫肠道中的振荡 Ca2 信号传导
  • 批准号:
    7239484
  • 财政年份:
    2006
  • 资助金额:
    $ 44.4万
  • 项目类别:
Oscillatory Ca2 signaling in the C. elegans intestine
线虫肠道中的振荡 Ca2 信号传导
  • 批准号:
    7631168
  • 财政年份:
    2006
  • 资助金额:
    $ 44.4万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 44.4万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 44.4万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.4万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.4万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 44.4万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.4万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 44.4万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 44.4万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 44.4万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.4万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了