Real-time microviscosity measurement tools for the cell

细胞实时微粘度测量工具

基本信息

  • 批准号:
    7932772
  • 负责人:
  • 金额:
    $ 28.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-18 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Microviscosity in the cell membrane and the cell cytoplasm are important parameters in cell signaling and disease. Presently, viscosity on the microscopic scale is determined by fluorescence anisotropy, fluorescence recovery after photobleaching (FRAP), or magnetic nanoparticles. A group of viscosity-sensitive fluorescent molecules, generally termed molecular rotors, allows a new, fast, and convenient approach with minimum requirements of instrumentation and very high temporal and spatial resolution. However, molecular rotors pose one disadvantage - they are intensity based, and local concentration gradients may reduce measurement accuracy. The proposed research program builds on a recently developed ratiometric dye (J.Am.Chem.Soc. 2006; 128: 398-399) in which a molecular rotor and a fluorescent reference unit form a covalently linked dye pair for resonance energy transfer (RET). This ratiometric dye has the potential to overcome limitations posed by concentration gradients and optical properties. The overall goal of the proposed research is to develop specific fluorescent ratiometric viscosity sensors to be used in phospholipid bilayers, cell membranes, and the cell cytoplasm. We propose the synthesis, characterization, and optimization of membrane-targeted as well as cytoplasm-targeted ratiometric molecular rotors. The experimental approach includes the testing and application of the new viscosity sensitive dyes in model phospholipid bilayers, red cell ghosts, and living cells. This testing approach allows us to characterize the new probes in environments of increasing complexity. The outcome of the proposed research will be the availability of a series of real-time, microscale viscosity probes for cellular environments with a wide range of applications. Some examples where the new viscosity probes will be useful are: - Analysis of the involvement of the cell membrane in cell signaling under fluid shear stress (vascular endothelial cells) - Analysis of changes in cell membrane biomechanics in atherosclerosis - Studies involving membrane lipid rafts - Analysis of the role of cytoplasmic viscosity in the cryopreservation of cells While it is not the goal of this application to actually apply molecular rotors in the above examples, we will provide the necessary probes as well as their methods of use for investigators involved in any fields listed above or related. Public Health Relevance Statement: Cell membrane and cytoplasmic viscosity are of high relevance to cell signaling (e.g. blood pressure regulation) and to various disease states (e.g. altered membrane viscosity related to atherosclerosis, cell malignancy, hypercholesterolemia, and diabetes). We propose to develop new, ultrafast and ultra-high resolution methods to determine changes in membrane and cytoplasm viscosity using fluorescent molecular rotors. With these new tools, studies involving viscosity in the cell will be accelerated or made possible in the first place, thus enabling faster study and better understanding of cell signaling processes and the cellular foundations of various disease states. Cell membrane and cytoplasmic viscosity are of high relevance to cell signaling (e.g. blood pressure regulation) and to various disease states (e.g. altered membrane viscosity related to atherosclerosis, cell malignancy, hypercholesterolemia, and diabetes). We propose to develop new, ultrafast and ultra-high resolution methods to determine changes in membrane and cytoplasm viscosity using fluorescent molecular rotors. With these new tools, studies involving viscosity in the cell will be accelerated or made possible in the first place, thus enabling faster study and better understanding of cell signaling processes and the cellular foundations of various disease states.
描述(由申请人提供):细胞膜和细胞质中的微粘度是细胞信号传导和疾病的重要参数。目前,微观尺度上的粘度是通过荧光各向异性、光漂白后荧光恢复(FRAP)或磁性纳米颗粒来确定的。一组对粘度敏感的荧光分子(通常称为分子转子)允许一种新的、快速且方便的方法,对仪器的要求最低,并且具有非常高的时间和空间分辨率。然而,分子转子有一个缺点——它们是基于强度的,并且局部浓度梯度可能会降低测量精度。拟议的研究计划建立在最近开发的比例染料(J.Am.Chem.Soc. 2006;128:398-399)的基础上,其中分子转子和荧光参考单元形成共价连接的染料对,用于共振能量转移(RET)。这种比率染料有可能克服浓度梯度和光学特性带来的限制。该研究的总体目标是开发用于磷脂双层、细胞膜和细胞质的特定荧光比率粘度传感器。我们提出了膜靶向和细胞质靶向比率分子转子的合成、表征和优化。实验方法包括在模型磷脂双层、红细胞影和活细胞中测试和应用新型粘度敏感染料。这种测试方法使我们能够在日益复杂的环境中表征新探头。 拟议研究的成果将是为细胞环境提供一系列实时、微型粘度探针,并具有广泛的应用。新粘度探头的一些有用示例包括: - 分析流体剪切应力下细胞膜参与细胞信号传导(血管内皮细胞) - 动脉粥样硬化细胞膜生物力学变化分析 - 涉及膜脂筏的研究 - 分析细胞质粘度在细胞冻存中的作用 虽然本申请的目标不是在上述示例中实际应用分子转子,但我们将为涉及上述任何领域或相关领域的研究人员提供必要的探针及其使用方法。 公共卫生相关性声明:细胞膜和细胞质粘度与细胞信号传导(例如血压调节)和各种疾病状态(例如与动脉粥样硬化、细胞恶性肿瘤、高胆固醇血症和糖尿病相关的膜粘度改变)高度相关。我们建议开发新的超快和超高分辨率方法,利用荧光分子转子测定膜和细胞质粘度的变化。有了这些新工具,涉及细胞粘度的研究将首先加速或成为可能,从而能够更快地研究和更好地理解细胞信号传导过程和各种疾病状态的细胞基础。细胞膜和细胞质粘度与细胞信号传导(例如血压调节)和各种疾病状态(例如与动脉粥样硬化、细胞恶性肿瘤、高胆固醇血症和糖尿病相关的膜粘度改变)高度相关。我们建议开发新的超快和超高分辨率方法,利用荧光分子转子测定膜和细胞质粘度的变化。有了这些新工具,涉及细胞粘度的研究将首先加速或成为可能,从而能够更快地研究和更好地理解细胞信号传导过程和各种疾病状态的细胞基础。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
Synthesis and evaluation of self-calibrating ratiometric viscosity sensors.
  • DOI:
    10.1039/c0ob01042a
  • 发表时间:
    2011-05-07
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Yoon HJ;Dakanali M;Lichlyter D;Chang WM;Nguyen KA;Nipper ME;Haidekker MA;Theodorakis EA
  • 通讯作者:
    Theodorakis EA
Molecular rotors: Synthesis and evaluation as viscosity sensors.
  • DOI:
    10.1016/j.tet.2010.01.093
  • 发表时间:
    2010-04-03
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Sutharsan J;Lichlyter D;Wright NE;Dakanali M;Haidekker MA;Theodorakis EA
  • 通讯作者:
    Theodorakis EA
Cyclopenta[b]naphthalene cyanoacrylate dyes: synthesis and evaluation as fluorescent molecular rotors.
  • DOI:
    10.1039/c4ob02563f
  • 发表时间:
    2015-03-14
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Kocsis LS;Elbel KM;Hardigree BA;Brummond KM;Haidekker MA;Theodorakis EA
  • 通讯作者:
    Theodorakis EA
Ratiometric mechanosensitive fluorescent dyes: Design and applications.
  • DOI:
    10.1039/c5tc03504j
  • 发表时间:
    2016-04-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haidekker MA;Theodorakis EA
  • 通讯作者:
    Theodorakis EA
Imaging of flow patterns with fluorescent molecular rotors.
  • DOI:
    10.1007/s10895-010-0661-x
  • 发表时间:
    2010-09
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Mustafic, Adnan;Huang, Hsuan-Ming;Theodorakis, Emmanuel A.;Haidekker, Mark A.
  • 通讯作者:
    Haidekker, Mark A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARK Andreas HAIDEKKER其他文献

MARK Andreas HAIDEKKER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARK Andreas HAIDEKKER', 18)}}的其他基金

Noninvasive imaging of tissue-engineered blood vessels
组织工程血管的无创成像
  • 批准号:
    7345648
  • 财政年份:
    2006
  • 资助金额:
    $ 28.44万
  • 项目类别:
Noninvasive imaging of tissue-engineered blood vessels
组织工程血管的无创成像
  • 批准号:
    7035994
  • 财政年份:
    2006
  • 资助金额:
    $ 28.44万
  • 项目类别:
DEVELOPMENT OF A FLUORESCENCE-BASED BIOFLUID VISCOMETER
基于荧光的生物流体粘度计的开发
  • 批准号:
    6608971
  • 财政年份:
    2002
  • 资助金额:
    $ 28.44万
  • 项目类别:
DEVELOPMENT OF A FLUORESCENCE-BASED BIOFLUID VISCOMETER
基于荧光的生物流体粘度计的开发
  • 批准号:
    6932387
  • 财政年份:
    2002
  • 资助金额:
    $ 28.44万
  • 项目类别:
DEVELOPMENT OF A FLUORESCENCE-BASED BIOFLUID VISCOMETER
基于荧光的生物流体粘度计的开发
  • 批准号:
    6909444
  • 财政年份:
    2002
  • 资助金额:
    $ 28.44万
  • 项目类别:
DEVELOPMENT OF A FLUORESCENCE-BASED BIOFLUID VISCOMETER
基于荧光的生物流体粘度计的开发
  • 批准号:
    6615768
  • 财政年份:
    2002
  • 资助金额:
    $ 28.44万
  • 项目类别:
CELL MEMBRANE FLUIDITY UNDER FLUID SHEAR STRESS
流体剪切应力下的细胞膜流动性
  • 批准号:
    6135467
  • 财政年份:
    2000
  • 资助金额:
    $ 28.44万
  • 项目类别:

相似海外基金

Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
  • 批准号:
    24K21101
  • 财政年份:
    2024
  • 资助金额:
    $ 28.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Epigenetic Regulator Prdm16 Controls Smooth Muscle Phenotypic Modulation and Atherosclerosis Risk
表观遗传调节因子 Prdm16 控制平滑肌表型调节和动脉粥样硬化风险
  • 批准号:
    10537602
  • 财政年份:
    2023
  • 资助金额:
    $ 28.44万
  • 项目类别:
Targeted multimodal stimuli-responsive nanogels for atherosclerosis imaging and therapy
用于动脉粥样硬化成像和治疗的靶向多模式刺激响应纳米凝胶
  • 批准号:
    2880683
  • 财政年份:
    2023
  • 资助金额:
    $ 28.44万
  • 项目类别:
    Studentship
Body composition and atherosclerosis-related biomarkers in women with endometriosis
子宫内膜异位症女性的身体成分和动脉粥样硬化相关生物标志物
  • 批准号:
    23K15842
  • 财政年份:
    2023
  • 资助金额:
    $ 28.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
2023 Atherosclerosis
2023 动脉粥样硬化
  • 批准号:
    10675221
  • 财政年份:
    2023
  • 资助金额:
    $ 28.44万
  • 项目类别:
Role of IL-6 trans signaling in atherosclerosis development and late-stage pathogenesis
IL-6反式信号传导在动脉粥样硬化发展和晚期发病机制中的作用
  • 批准号:
    10652788
  • 财政年份:
    2023
  • 资助金额:
    $ 28.44万
  • 项目类别:
From genotype to phenotype in a GWAS locus: the role of REST in atherosclerosis
GWAS 位点从基因型到表型:REST 在动脉粥样硬化中的作用
  • 批准号:
    10570469
  • 财政年份:
    2023
  • 资助金额:
    $ 28.44万
  • 项目类别:
Alcohol Regulation of Endothelial Plasticity in Atherosclerosis
酒精对动脉粥样硬化内皮可塑性的调节
  • 批准号:
    10585070
  • 财政年份:
    2023
  • 资助金额:
    $ 28.44万
  • 项目类别:
The role of extracellular vesicle-associated MicroRNAs in HIV-associated atherosclerosis
细胞外囊泡相关 MicroRNA 在 HIV 相关动脉粥样硬化中的作用
  • 批准号:
    10619831
  • 财政年份:
    2023
  • 资助金额:
    $ 28.44万
  • 项目类别:
MULTI-ETHNIC STUDY OF ATHEROSCLEROSIS - TOPMED
动脉粥样硬化的多种族研究 - TOPMED
  • 批准号:
    10974007
  • 财政年份:
    2023
  • 资助金额:
    $ 28.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了