Statistical Methods for Gene Mapping

基因作图统计方法

基本信息

  • 批准号:
    7989689
  • 负责人:
  • 金额:
    $ 14.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-01-01 至 2010-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): One of the paradoxes of modern genetics is the contrast between the tremendous technological advances in sequencing and genotyping during the past decade and the slow progress in identifying genes for complex diseases. These diseases involve subtle disruptions of biochemical and developmental pathways and display substantial genetic heterogeneity and gene-by-gene and gene-by-environment interactions. In response to these challenges, geneticists are collecting much larger samples and genotyping enormous numbers of SNPs (single nucleotide polymorphisms). To handle the massive increases in data flow and extract the maximum amount of information from available data, better statistical analysis tools must be made available to the human genetics community. The current grant supports construction of new statistical methods and their translation into user friendly software via the widely distributed program Mendel. Under the auspices of the grant, we will tackle a series of related projects on computational statistics, association mapping, estimation of DNA copy numbers, population genetics, and software for managing and displaying human pedigree data. Our research in computational statistics revolves around three classes of optimization algorithms - MM and EM algorithms, block relaxation methods, and lasso penalized estimation. We will apply these methods to estimation in random graphs, nonnegative matrix factorization, and multicategory discriminant analysis. These methods are also pertinent to fast logistic regression with case-control data and fast mapping of QTLs (quantitative trait loci). We further plan to develop fast tests of association based on contingency tables, robust testing procedures for multivariate traits, and algorithms for modeling gene-by-gene and gene-by-environment interactions. Our efforts on copy number variation will focus on penalized estimation of DNA copy number by signal intensity, and hidden Markov modeling of copy numbers from the Illumina genotyping platform. In population genetics we will develop methods and software for testing Hardy-Weinberg equilibrium in pedigree data, penalized estimation of haplotype frequencies, and estimation of ethnic admixture. Finally our software development efforts will concentrate on making Mendel more conducive to dense, genome-wide SNP data, including: parallelization of the existing Mendel code; restructuring of the data structures in Mendel; making it easier to run complete analysis routines within Mendel; and perfection of MendelPro, the graphical user interface to Mendel. This ambitious agenda is all part of our coherent effort to provide a single platform for managing, displaying, and analyzing genetic data. This kind of software infrastructure is necessary if genetic epidemiology is to move rapidly forward in the twenty-first century.
描述(由申请人提供):现代遗传学的矛盾之一是过去十年中测序和基因分型方面的巨大技术进步与鉴定复杂疾病基因方面的缓慢进展之间的对比。这些疾病涉及生物化学和发育途径的微妙破坏,并显示出相当大的遗传异质性和基因与基因和基因与环境的相互作用。为了应对这些挑战,遗传学家正在收集更大的样本,并对大量的SNP(单核苷酸多态性)进行基因分型。为了处理数据流的大量增加并从现有数据中提取最大量的信息,必须向人类遗传学界提供更好的统计分析工具。目前的赠款支持新的统计方法的建设和翻译成用户友好的软件通过广泛分布的程序孟德尔。在拨款的资助下,我们将处理一系列相关的项目,包括计算统计、关联映射、DNA拷贝数估计、群体遗传学以及管理和显示人类谱系数据的软件。 我们的研究在计算统计围绕三类优化算法- MM和EM算法,块松弛方法,套索惩罚估计。我们将把这些方法应用于随机图的估计、非负矩阵分解和多类别判别分析。这些方法也适用于病例对照数据的快速逻辑回归和QTL(数量性状基因座)的快速定位。我们还计划开发基于列联表的快速关联测试,多变量性状的稳健测试程序,以及用于建模基因与基因和基因与环境相互作用的算法。 我们在拷贝数变异方面的努力将集中在通过信号强度对DNA拷贝数的惩罚性估计,以及来自Illumina基因分型平台的拷贝数的隐马尔可夫模型。在群体遗传学方面,我们将开发方法和软件,用于测试系谱数据中的Hardy-Weinberg平衡,单倍型频率的惩罚估计,以及种族混合的估计。最后,我们的软件开发工作将集中在使孟德尔更有利于密集的,全基因组SNP数据,包括:现有孟德尔代码的并行化;在孟德尔的数据结构的重组;使其更容易在孟德尔运行完整的分析例程;和MendelPro的完善,孟德尔的图形用户界面。 这一雄心勃勃的议程是我们一致努力的一部分,旨在为管理、显示和分析遗传数据提供一个单一的平台。如果遗传流行病学要在世纪迅速发展,这种软件基础设施是必要的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth L Lange其他文献

Mutation Takes No Vacation: Can Structured Treatment Interruptions Increase the Risk of Drug‐Resistant HIV‐1?
突变不休:结构化治疗中断会增加耐药 HIV-1 的风险吗?

Kenneth L Lange的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth L Lange', 18)}}的其他基金

Modeling, Inference, and Optimization for Genomic and Biomedical Big Data
基因组和生物医学大数据的建模、推理和优化
  • 批准号:
    10205870
  • 财政年份:
    2021
  • 资助金额:
    $ 14.52万
  • 项目类别:
Modeling, Inference, and Optimization for Genomic and Biomedical Big Data
基因组和生物医学大数据的建模、推理和优化
  • 批准号:
    10438722
  • 财政年份:
    2021
  • 资助金额:
    $ 14.52万
  • 项目类别:
Modeling, Inference, and Optimization for Genomic and Biomedical Big Data
基因组和生物医学大数据的建模、推理和优化
  • 批准号:
    10633126
  • 财政年份:
    2021
  • 资助金额:
    $ 14.52万
  • 项目类别:
Training Grant in Genomic Analysis and Interpretation
基因组分析和解释培训补助金
  • 批准号:
    7488996
  • 财政年份:
    2002
  • 资助金额:
    $ 14.52万
  • 项目类别:
Training Grant in Genomic Analysis and Interpretation
基因组分析和解释培训补助金
  • 批准号:
    6605760
  • 财政年份:
    2002
  • 资助金额:
    $ 14.52万
  • 项目类别:
Training Grant in Genomic Analysis and Interpretation
基因组分析和解释培训补助金
  • 批准号:
    8473241
  • 财政年份:
    2002
  • 资助金额:
    $ 14.52万
  • 项目类别:
Training Grant in Genomic Analysis and Interpretation
基因组分析和解释培训补助金
  • 批准号:
    8149770
  • 财政年份:
    2002
  • 资助金额:
    $ 14.52万
  • 项目类别:
Training Grant in Genomic Analysis and Interpretation
基因组分析和解释培训补助金
  • 批准号:
    7487717
  • 财政年份:
    2002
  • 资助金额:
    $ 14.52万
  • 项目类别:
Training Grant in Genomic Analysis and Interpretation
基因组分析和解释培训补助金
  • 批准号:
    8698794
  • 财政年份:
    2002
  • 资助金额:
    $ 14.52万
  • 项目类别:
Training Grant in Genomic Analysis and Interpretation
基因组分析和解释培训补助金
  • 批准号:
    7661601
  • 财政年份:
    2002
  • 资助金额:
    $ 14.52万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了