Multiscale Modeling and Parallel Simulations of Blood Flow in Cerebral Malaria an
脑疟疾血流的多尺度建模和并行模拟
基本信息
- 批准号:8065374
- 负责人:
- 金额:$ 58.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdhesivesAffectAlgorithmsAnemiaAnimal ModelBindingBiochemicalBiological ModelsBiomechanicsBiophysicsBlood capillariesBlood flowBrainCapsid ProteinsCell AdhesionCell Adhesion ProcessCell AggregationCell membraneCell modelCell surfaceCellsCephalicCerealsCerebral MalariaClinicalCodeComplexComputer SystemsCoupledCytoskeletonDataDevelopmentDiabetes MellitusDiffusionDiseaseDocumentationElliptocytosis foundEndothelial CellsEquationErythrocytesFalciparum MalariaFutureGenerationsGlycocalyxGoalsHealthHematocrit procedureHematological DiseaseHemoglobinHigh Performance ComputingHumanIn VitroIndividualIntercellular adhesion molecule 1LaboratoriesLasersLeadLengthLigandsLinkLiquid substanceMalariaMeasurementMeasuresMechanicsMediatingMethodologyMethodsMetricMicrocirculationMicrofluidic MicrochipsMicrofluidicsMicroscopyMiningMinorModelingMolecularMonitorMotionNanotechnologyNutrientObstructionOnline SystemsOpticsOrganOxygenPharmaceutical PreparationsPhasePhysiologicalPreparationProceduresProcessPropertyProteinsReactionRecording of previous eventsRecoveryResourcesRheologySchoolsSeverity of illnessShapesSickle CellSickle HemoglobinSignal PathwaySimulateSiteSoftware ToolsSpectrinStagingSymptomsSystemTechniquesTestingTimeTissuesTransport ReactionTreesUncertaintyValidationWidthWorkabstractingadhesion processarteriolebasecancer cellcapillarycomputer codecomputing resourcesdesignflexibilitylaser tweezermolecular dynamicsmulti-scale modelingnanoscaleoxygen transportparallel computingparticlepolymerizationpressureprogramsreceptorrepositoryresearch studyresponsesensorsimulationsoftware repositorytheoriesthree-dimensional modelingtoolvenuleworking group
项目摘要
DESCRIPTION (provided by applicant): Project Summary/Abstract The objective of this project is to develop a unified and validated multiscale modeling methodology for two diseases with serious hematological disorders: celebral malaria (CM) and sickle-cell (SS) anemia. The common clinical symptom of both diseases is obstruction in the microcirculation caused primarily by loss of deformability of red blood cells (RBCs) and increased cytoadhesion. Both diseases are characterized by multiscale phenomena, spanning at least four orders of magnitude in length scale with corresponding disparity in the temporal scale. Moreover, the local vaso-oclusions occurring in CM and SS strongly affect blood flow and oxygen transport at the global organ scale as well. Building on recent progress in modeling RBCs at the spectrin level and cell-aggregation processes and taking advantage of available petaflop-level computing resources, we propose a parallel multiscale methodology to model CM and SS and use it as a predictive tool for quantitatively assessing the severity of these diseases. This will form a general simulation platform for adding further complexity in future studies, e.g., incorporating more biochemical details or studying other hemolytic disorders. Predictability of multiscale models requires quantifying uncertainty, and, to this end, we will incorporate polynomial chaos methods to model and propagate parametric uncertainties through the multiscale system. In addition, to validate the new methodology, microfluidic experiments, optical tweezers measurements and 3D phase microscopy will be used to test different aspects of the conceptual and numerical modeling under different conditions. The specific contributions of this project include: (1) Development of fine- and coarse-grained RBC models in CM (cytoskeleton dynamics) and SS (oxygen transport and polymerization) using molecular dynamics (MD), partial differential equations (PDEs), and mean-field theory. (2) Characterization of infected RBCs and sickle cells at different developmental stages using optical non-invasive means. (3) Modeling of flow and rheology in small vessels. Flow modeling will be based on the "triple-decker"1 - a new algorithm that we have developed for interfacing seamlessly MD, mesoscopic dynamics, and the Navier-Stokes equations. For mesoscopic dynamics we will employ the dissipative particle dynamics (DPD) method, a particularly effective simulation approach for complex fluids. We plan to disseminate our models and software tools, including the general-purpose triple-decker algorithm, via web-based repositories, existing public openware sites, summer schools, and through the MSM consortium. 1 http://www.cfm.brown.edu/crunch/IMAG/FedosovK08.pdf
PUBLIC HEALTH RELEVANCE: We propose to develop a unified multiscale modeling methodology for two diseases with serious hematological disorders: celebral malaria (CM) and sickle-cell (SS) anemia. We will model the increase in stiffness of the deformable red blood cells and the adhesion processes involved and correspondingly blood flow in capillaries and arterioles, modeling multiscale phenomena across more than four orders of magnitude in spatio-temporal scales.
描述(由申请人提供): 项目摘要/摘要 该项目的目标是针对两种严重血液疾病疾病开发统一且经过验证的多尺度建模方法:疟疾(CM)和镰状细胞(SS)贫血。这两种疾病的共同临床症状是主要由红细胞(RBC)变形能力丧失和细胞粘附增加引起的微循环阻塞。这两种疾病都具有多尺度现象的特点,在长度尺度上跨越至少四个数量级,在时间尺度上也有相应的差异。此外,CM和SS中发生的局部血管闭塞也强烈影响全球器官尺度的血流和氧气输送。基于血影蛋白水平和细胞聚集过程中红细胞建模的最新进展,并利用可用的 petaflop 级计算资源,我们提出了一种并行多尺度方法来建模 CM 和 SS,并将其用作定量评估这些疾病严重程度的预测工具。这将形成一个通用模拟平台,以增加未来研究的复杂性,例如纳入更多生化细节或研究其他溶血性疾病。多尺度模型的可预测性需要量化不确定性,为此,我们将结合多项式混沌方法来建模并通过多尺度系统传播参数不确定性。此外,为了验证新方法,将使用微流体实验、光镊测量和 3D 相位显微镜来测试不同条件下概念和数值模型的不同方面。该项目的具体贡献包括:(1)利用分子动力学(MD)、偏微分方程(PDE)和平均场理论开发CM(细胞骨架动力学)和SS(氧传输和聚合)中的细粒度和粗粒度RBC模型。 (2) 使用光学非侵入性手段表征不同发育阶段的感染红细胞和镰状细胞。 (3) 小血管中的流动和流变学建模。流动建模将基于“三层”1 - 我们开发的一种新算法,用于无缝连接MD、介观动力学和纳维-斯托克斯方程。对于介观动力学,我们将采用耗散粒子动力学(DPD)方法,这是一种对复杂流体特别有效的模拟方法。我们计划通过基于网络的存储库、现有的公共开放软件网站、暑期学校以及 MSM 联盟来传播我们的模型和软件工具,包括通用三层算法。 1 http://www.cfm.brown.edu/crunch/IMAG/FedosovK08.pdf
公共健康相关性:我们建议针对两种严重血液疾病的疾病开发统一的多尺度建模方法:疟疾(CM)和镰状细胞(SS)贫血。我们将模拟可变形红细胞硬度的增加以及所涉及的粘附过程以及相应的毛细血管和小动脉中的血流,模拟时空尺度上超过四个数量级的多尺度现象。
项目成果
期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.
- DOI:10.1016/j.mvr.2011.05.006
- 发表时间:2011-09
- 期刊:
- 影响因子:3.1
- 作者:Pan W;Fedosov DA;Caswell B;Karniadakis GE
- 通讯作者:Karniadakis GE
Quantitative Biomechanics of Healthy and Diseased Human Red Blood Cells using Dielectrophoresis in a Microfluidic System.
- DOI:10.1016/j.eml.2014.11.006
- 发表时间:2014-12
- 期刊:
- 影响因子:4.7
- 作者:Du, E;Dao, Ming;Suresh, Subra
- 通讯作者:Suresh, Subra
Blood flow in small tubes: quantifying the transition to the non-continuum regime.
- DOI:10.1017/jfm.2013.91
- 发表时间:2013-05-01
- 期刊:
- 影响因子:3.7
- 作者:Lei H;Fedosov DA;Caswell B;Karniadakis GE
- 通讯作者:Karniadakis GE
Predicting the morphology of sickle red blood cells using coarse-grained models of intracellular aligned hemoglobin polymers.
- DOI:10.1039/c2sm07294g
- 发表时间:2012-04-28
- 期刊:
- 影响因子:3.4
- 作者:Lei H;Karniadakis GE
- 通讯作者:Karniadakis GE
A low-dimensional model for the red blood cell.
红细胞的低维模型。
- DOI:10.1039/c0sm00183j
- 发表时间:2010-09-21
- 期刊:
- 影响因子:3.4
- 作者:Pan W;Caswell B;Karniadakis GE
- 通讯作者:Karniadakis GE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Karniadakis其他文献
George Karniadakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Karniadakis', 18)}}的其他基金
Multiscale Modeling and Parallel Simulations of Blood Flow in Cerebral Malaria an
脑疟疾血流的多尺度建模和并行模拟
- 批准号:
7901006 - 财政年份:2009
- 资助金额:
$ 58.36万 - 项目类别:
Multiscale Modeling and Parallel Simulations of Blood Flow in Cerebral Malaria an
脑疟疾血流的多尺度建模和并行模拟
- 批准号:
7689647 - 财政年份:2009
- 资助金额:
$ 58.36万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 58.36万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 58.36万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 58.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 58.36万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 58.36万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 58.36万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 58.36万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 58.36万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 58.36万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 58.36万 - 项目类别:
Investment Accelerator














{{item.name}}会员




