Dynamics and regulation of actomyosin contractility in the C. elegans embryo
线虫胚胎肌动球蛋白收缩力的动力学和调节
基本信息
- 批准号:8163737
- 负责人:
- 金额:$ 29.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-20 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAddressAffectArchitectureBehaviorBiochemicalBiological ModelsCaenorhabditis elegansCell ShapeCell surfaceCellsComputer SimulationComputer softwareCongenital AbnormalityCrosslinkerCytokinesisDataDevelopmentDiseaseDoseEmbryoF-ActinFilamentGene Transfer TechniquesGoalsHealthHeartImageImage AnalysisIn VitroIndividualJavaKineticsLifeLinkMalignant NeoplasmsMeasurementMechanicsMicrofilamentsModelingMolecularMolecular GeneticsMotorMovementMuscle ContractionMyosin ATPaseMyosin Type IIPhysiologicalPhysiologyProcessPropertyQuantitative MicroscopyRNA InterferenceRegulationRelative (related person)ResistanceResolutionShapesSkeletal MuscleSurfaceSystemTestingTissuesWorkalpha Actininanillinbasecell motilitycofilincrosslinkdensityexperimental analysisgenetic manipulationinhibitor/antagonistinnovationinsightlight microscopyprofilin 1research studyresponserhosimulationtool
项目摘要
DESCRIPTION (provided by applicant): The broad goal of this study is to understand the basic principles that govern actomyosin contractility in non-muscle cells, using C. elegans as a model system. Unlike in skeletal muscle contraction, where force is produced by stable almost crystalline arrays of actin filaments and myosin motors, contractility in non-muscle cells is the global consequence of distributed local force-generating interactions among motors and filaments that rapidly assemble, move and dissemble as they interact. Understanding how organized cell-scale contractile behaviors emerge from these local interactions, and how local regulation of the individual players "tunes" the same system to produce different behaviors, is fundamental to understanding how cells regulate contractility during normal development and physiology and how it is dysregulated in disease. We will address these challenges in the context of a fundamental and widely used mode of contractility - called focal contractility - in which the periodic assembly, contraction and disassembly of contractile networks drive transient deformations of the cell surface that are rectified to produce cell shape change, cortical flow and tissue deformation. The C. elegans embryo provides a uniquely tractable opportunity to study focal contractility at the surface of single large cells using well-developed tools for molecular genetic manipulation, transgenesis, and high-resolution quantitative light microscopy. We will use a tightly integrated combination of quantitative imaging, experimental manipulations, and predictive computer simulations to ask the following questions: 1) How does the focal contractility cycle work? i.e. what governs the initiation and termination of focal contractions? 2) How is focal contractility regulated by tuning local myosin activity, and the local kinetics of myosin and actin filament assembly and disassembly? 3) Can detailed computer simulations, based on what we know about the properties of and interactions among actin filaments, myosin, crosslinkers and their key regulators, reproduce the macroscopic dynamics of focal contractility and its regulation and reveal the fundamental underlying principles? Given the extensive conservation of molecular players involved in actomyosin contractility, our work will have direct relevance to understanding contractility in many other contexts, both in health and disease.
PUBLIC HEALTH RELEVANCE: The work proposed here aims to elucidate fundamental principles underlying the organization and regulation of actomyosin contractility in non-muscle cells, using C. elegans as a model system. Actomyosin contractility is fundamental to normal development and physiology and is at the heart of processes that underlie birth defects (eg: neurulation) and that go awry in disease (e.g. cell motility in cancer). Because the basic machinery that governs contractility is highly conserved, the results of this work should have direct implications for the understanding of these aberrant states.
描述(由申请人提供):本研究的主要目标是使用秀丽隐杆线虫作为模型系统,了解控制非肌肉细胞肌动球蛋白收缩性的基本原理。与骨骼肌收缩不同,在骨骼肌收缩中,力是由肌动蛋白丝和肌球蛋白马达的稳定的几乎晶体阵列产生的,非肌肉细胞的收缩性是马达和肌丝之间分布式局部产生力相互作用的整体结果,它们在相互作用时快速组装、移动和分解。了解有组织的细胞尺度收缩行为如何从这些局部相互作用中产生,以及个体参与者的局部调节如何“调整”同一系统以产生不同的行为,对于理解细胞在正常发育和生理过程中如何调节收缩性以及在疾病中如何失调是至关重要的。我们将在一种基本且广泛使用的收缩模式(称为局灶收缩性)的背景下解决这些挑战,其中收缩网络的周期性组装、收缩和分解驱动细胞表面的瞬时变形,这些变形被纠正以产生细胞形状变化、皮质流动和组织变形。线虫胚胎提供了一个独特的易处理的机会,可以使用成熟的分子遗传操作、转基因和高分辨率定量光学显微镜工具来研究单个大细胞表面的局灶收缩性。我们将使用定量成像、实验操作和预测计算机模拟的紧密结合来提出以下问题:1)局灶收缩性循环如何工作?即什么控制局灶性收缩的开始和终止? 2)如何通过调节局部肌球蛋白活性以及肌球蛋白和肌动蛋白丝组装和拆卸的局部动力学来调节局部收缩力? 3)基于我们对肌动蛋白丝、肌球蛋白、交联剂及其关键调节剂的特性和相互作用的了解,详细的计算机模拟能否重现局灶收缩性及其调节的宏观动力学并揭示基本原理?鉴于参与肌动球蛋白收缩性的分子参与者的广泛保护,我们的工作将与了解许多其他情况下的收缩性(无论是健康还是疾病)直接相关。
公共健康相关性:本文提出的工作旨在以秀丽隐杆线虫作为模型系统,阐明非肌肉细胞中肌动球蛋白收缩性的组织和调节的基本原理。肌动球蛋白收缩性是正常发育和生理学的基础,并且是出生缺陷(例如神经形成)和疾病中出错(例如癌症中的细胞运动)过程的核心。由于控制收缩性的基本机制是高度保守的,因此这项工作的结果应该对理解这些异常状态具有直接影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edwin Marshall Munro其他文献
Edwin Marshall Munro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edwin Marshall Munro', 18)}}的其他基金
Mechanistic origins and dynamic control of epithelial zippering and neural tube closure
上皮拉链和神经管闭合的机械起源和动态控制
- 批准号:
9317513 - 财政年份:2016
- 资助金额:
$ 29.23万 - 项目类别:
Dynamics and regulation of actomyosin contractility in the C. elegans embryo
线虫胚胎肌动球蛋白收缩力的动力学和调节
- 批准号:
8519133 - 财政年份:2011
- 资助金额:
$ 29.23万 - 项目类别:
Dynamics and regulation of actomyosin contractility in the C. elegans embryo
线虫胚胎肌动球蛋白收缩力的动力学和调节
- 批准号:
8334007 - 财政年份:2011
- 资助金额:
$ 29.23万 - 项目类别:
Dynamics and regulation of actomyosin contractility in the C. elegans embryo
线虫胚胎肌动球蛋白收缩力的动力学和调节
- 批准号:
8706902 - 财政年份:2011
- 资助金额:
$ 29.23万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 29.23万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 29.23万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 29.23万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 29.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 29.23万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 29.23万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 29.23万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 29.23万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 29.23万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 29.23万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




