Stochastic Models of Visual Search
视觉搜索的随机模型
基本信息
- 批准号:8161053
- 负责人:
- 金额:$ 23.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingArchitectureAttentionBehaviorBehavioralBiological Neural NetworksBrainCellsCognitionCollaborationsCompetenceComputer SimulationDataDiseaseEvaluationEye MovementsFeedbackFoundationsGoalsHumanInjuryInterventionLateralLinkLocationMacacaMapsMeasuresModelingMonkeysNatureNeuronsParticipantPatternPerformancePhysiologyProbabilityProcessPsychologyRaceReaction TimeResearchRoleSaccadesStagingTestingTimeTrainingTranslatingTranslational ResearchVariantVisionVisualVisual attentionbasecognitive controldesignfeedingfrontal eye fieldsgazehuman datamathematical modelneural circuitneurophysiologyprogramsrelating to nervous systemresearch studyresponsevisual performancevisual search
项目摘要
DESCRIPTION (provided by applicant): The long-term goal of our research is to understand how computational models of performance of visual tasks like locating and shifting gaze to a target a visual array map onto specific neural processes producing that performance. Elucidating this mapping provides converging constraints for discriminating between competing model architectures and provides functional explanations of neural circuit function. The aims of this proposal test, extend, refine, and integrate two major new computational models of target selection during visual search that we have recently developed. Data will consist of performance of monkeys and human participants searching for a target in a visual array in which target location can change unpredictably supplemented by neurophysiological data from FEF that was collected previously. The models provide quantitative accounts of detailed patterns of correct and error saccade behavior during visual search and also provide explanations for the temporal modulation of neurons in frontal eye field (FEF). Unlike previous models of visual search, ours account for the entire range of correct and error response probabilities and response time distributions during efficient and inefficient search, even when the target changes location unexpectedly. Aim 1 will develop, refine, and extend an INTERACTIVE RACE model of saccade target selection. We will test competing model architectures consisting of multiple stochastic accumulators (GO units) that govern when and where a saccade is made, where the nature of the interactions between GO units and the potential inclusion of a STOP unit for exerting cognitive control is manipulated across model variants. Successful models predict response probabilities and response time distributions in monkeys and humans and neural activity observed previously in monkeys. Aim 2 will test, refine, and extend a GATED ACCUMULATOR model of how visual salience is translated into a saccade command. The visual salience representation provided by FEF neurons will be the input to a neural network of stochastic GO units with alternative architectures that implement competing hypotheses about the role of feed forward, lateral and gating inhibition. Aim 3 will integrate these two models. This integration will be guided by new data from human participants performing visual search tasks in which key variables are manipulated to obtain new measures to test competing architectures.
PUBLIC HEALTH RELEVANCE: The models tested and refined through this research plan will provide a firm foundation from which to understand disorders of visual attention, orientation and mobility that are consequences of impaired visual search. Elucidation of the mapping between effective mathematical models of behavior and specific brain processes is necessary for translational research seeking to understand how vision and cognition are impacted by injury, disease, or pharmacological interventions.
描述(由申请人提供):我们研究的长期目标是了解视觉任务性能的计算模型(例如定位和将视线转移到视觉阵列目标)如何映射到产生该性能的特定神经过程。阐明这种映射为区分竞争模型架构提供了收敛约束,并提供了神经回路功能的功能解释。该提案的目的是测试、扩展、完善和集成我们最近开发的视觉搜索过程中目标选择的两个主要新计算模型。数据将包括猴子和人类参与者在视觉阵列中搜索目标的表现,其中目标位置可能会发生不可预测的变化,并由之前收集的 FEF 的神经生理学数据进行补充。该模型提供了视觉搜索过程中正确和错误扫视行为的详细模式的定量说明,并为额叶眼场 (FEF) 神经元的时间调制提供了解释。与以前的视觉搜索模型不同,我们的模型在有效和低效搜索期间考虑了正确和错误响应概率以及响应时间分布的整个范围,即使目标意外改变位置也是如此。目标 1 将开发、完善和扩展眼跳目标选择的 INTERACTIVE RACE 模型。我们将测试由多个随机累加器(GO 单元)组成的竞争模型架构,这些随机累加器控制扫视的时间和地点,其中 GO 单元之间交互的性质以及用于施加认知控制的 STOP 单元的潜在包含在模型变体中进行操纵。成功的模型可以预测猴子和人类的反应概率和反应时间分布以及先前在猴子中观察到的神经活动。目标 2 将测试、完善和扩展门控累加器模型,该模型用于将视觉显着性转化为眼跳命令。 FEF 神经元提供的视觉显着性表示将成为随机 GO 单元神经网络的输入,该神经网络具有替代架构,可实现关于前馈、横向和门控抑制作用的竞争假设。 Aim 3 将整合这两个模型。这种集成将由执行视觉搜索任务的人类参与者的新数据指导,其中操纵关键变量以获得新的措施来测试竞争架构。
公共健康相关性:通过本研究计划测试和完善的模型将为理解视觉搜索受损导致的视觉注意力、定向和移动障碍奠定坚实的基础。阐明有效的行为数学模型与特定大脑过程之间的映射对于寻求理解损伤、疾病或药物干预如何影响视觉和认知的转化研究是必要的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gordon Dennis Logan其他文献
Gordon Dennis Logan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gordon Dennis Logan', 18)}}的其他基金
Controlling visual cognition with visual working memory and long-term memory
用视觉工作记忆和长期记忆控制视觉认知
- 批准号:
9247953 - 财政年份:2015
- 资助金额:
$ 23.4万 - 项目类别:
Controlling visual cognition with visual working memory and long-term memory
用视觉工作记忆和长期记忆控制视觉认知
- 批准号:
8863035 - 财政年份:2015
- 资助金额:
$ 23.4万 - 项目类别:
Controlling visual cognition with visual working memory and long-term memory
用视觉工作记忆和长期记忆控制视觉认知
- 批准号:
9039086 - 财政年份:2015
- 资助金额:
$ 23.4万 - 项目类别:
Stochastic Models of Visual Decision Making and Visual Search
视觉决策和视觉搜索的随机模型
- 批准号:
10480866 - 财政年份:2011
- 资助金额:
$ 23.4万 - 项目类别:
Stochastic Models of Visual Decision Making and Visual Search
视觉决策和视觉搜索的随机模型
- 批准号:
8817898 - 财政年份:2011
- 资助金额:
$ 23.4万 - 项目类别:
Stochastic Models of Visual Decision Making and Visual Search
视觉决策和视觉搜索的随机模型
- 批准号:
10250330 - 财政年份:2011
- 资助金额:
$ 23.4万 - 项目类别:
Stochastic Models of Visual Decision Making and Visual Search
视觉决策和视觉搜索的随机模型
- 批准号:
9187469 - 财政年份:2011
- 资助金额:
$ 23.4万 - 项目类别:
Modeling the Role of Priming in Executive Control
模拟启动在执行控制中的作用
- 批准号:
7439137 - 财政年份:2007
- 资助金额:
$ 23.4万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant














{{item.name}}会员




