Stochastic Models of Visual Decision Making and Visual Search
视觉决策和视觉搜索的随机模型
基本信息
- 批准号:10480866
- 负责人:
- 金额:$ 38.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressArchitectureAreaAttentionAutomobile DrivingBehaviorBehavioralBiophysicsBrainCollaborationsComplexComputer ModelsDataDecision MakingDiseaseElectroencephalographyElectrophysiology (science)Event-Related PotentialsExhibitsEyeEye MovementsFoundationsFundingGoalsHumanIndividualIndividual DifferencesInjuryInterventionLinkLocationMacacaMathematicsMeasuresMindModelingMonkeysMorphologic artifactsMovementNatureNeurologicNeuronsParticipantPerformancePharmacologyProbabilityProcessRaceRampReaction TimeResearchRestSaccadesSignal TransductionSpecific qualifier valueTask PerformancesTestingTimeTrainingTranslational ResearchV4 neuronVisionVision DisordersVisualVisual FieldsVisual PerceptionVisual attentionVisual impairmentWorkbasebehavior measurementbehavior predictionbehavioral responsebrain behaviordesigndisabilityexperimental studyfrontal eye fieldshuman dataindexinginnovationinsightmental stateneural circuitneural modelneurophysiologypredictive modelingrelating to nervous systemresponsetheoriestoolvisual cognitionvisual processvisual search
项目摘要
PROJECT SUMMARY
Support is requested to advance an innovative, productive collaboration aimed at linking mind, brain, and
behavior using performance, neurophysiological, and electrophysiological measures from monkeys and
humans performing visual search and visual decision making tasks. The general goal is to derive the
connections from spike trains in monkeys to behavior in humans using computational models that specify
mental states mathematically, link them to brain states in particular neurons, and explain how the neural
computations produces behavior. Our Gated Accumulator Model (GAM) assumes a stochastic accumulation of
evidence to threshold for alternative responses. Model assessment involves quantitatively testing alternative
model architectures on predictions of behavioral measures, response probabilities and distributions of correct
and error response times, as well as neural measures and how these change with set size and target-distractor
discriminability in previously collected data from monkeys performing visual search. While our previously
funded research aimed to understand the architecture of evidence accumulation in GAM and the relationship of
model accumulators to the observed dynamics of movement-related neurons in FEF, our newly proposed
research aims to understand computationally the nature of the evidence that drives that accumulation and its
relationship to the measured dynamics of visually-responsive neurons in FEF. Aim 1 compares the quality of
salience evidence in lateralized EEG signals and neural discharges from visually-responsive neurons in
monkeys performing visual search as input evidence to a network of stochastic accumulators to predict
behavior. Aim 2 addresses a major challenge to the neural accumulator framework by determining whether
movement neuron dynamics in FEF actually ramp or step. Aim 3 evaluates alternative architectures for an
abstract Visual Attention Model (VAM) of the evidence driving accumulation to jointly predict observed behavior
and the measured dynamics of visually-responsive neurons. Aim 4 extends VAM to more complex visual tasks
involving filtering and selection. The result will be a broader and deeper understanding of the visual processes
that select targets and control eye movements. Computational models like VAM and GAM may be at the “just
right” level of abstraction. They capture essential details of the computation in ways that explain neural activity
and behavior in single participants, whether monkey or human. These models can be used to understand
normal behavior as well as illness, disability, and disease; the best-fitting parameters can characterize
individual differences in behavior and provide markers for brain measures. These models can also inform
neurological conditions that have a biophysical basis at the level of individual neurons and neural circuits,
offering insight into what neurons and circuits compute and how they do it.
项目总结
需要支持以推进创新、富有成效的协作,旨在将思维、大脑和
使用性能、神经生理学和电生理学测量的猴子和
人类执行视觉搜索和视觉决策任务。总体目标是派生
使用计算模型从猴子的尖峰训练到人类行为的联系
心理状态与大脑状态的数学联系,特别是神经元,并解释神经是如何
计算产生行为。我们的门控累加器模型(GAM)假设随机累积
证据达到了可供选择的反应门槛。模型评估涉及对备选方案进行量化测试
基于行为测量、响应概率和正确分布的预测的模型架构
和错误响应时间,以及神经测量,以及这些如何随设定的大小和目标干扰物而变化
以前从进行视觉搜索的猴子那里收集的数据中的区分性。而我们之前的
资助的研究旨在了解GAM中证据积累的架构以及
我们新提出的FEF运动相关神经元动态观察模型累加器
研究的目的是通过计算了解推动这种积累的证据的性质及其
与FEF内视觉反应神经元的测量动力学的关系。目标1比较以下各项的质量
偏侧化的脑电信号和视觉反应神经元的神经放电的显著证据
猴子进行视觉搜索,作为随机累加器网络的输入证据进行预测
行为。目标2通过确定神经累积器框架是否
FEF中的运动神经元动力学实际上是坡道或台阶。AIM 3评估可选架构
证据驱动累积联合预测观察行为的视觉注意模型
以及测量到的视觉反应神经元的动力学。AIM 4将VAM扩展到更复杂的视觉任务
包括过滤和选择。其结果将是对视觉过程的更广泛和更深入的理解
来选择目标并控制眼球运动。像VAM和GAM这样的计算模型可能只是
“正确”的抽象层次。它们以解释神经活动的方式捕捉到了计算的基本细节
以及单个参与者的行为,无论是猴子还是人类。这些模型可以用来理解
正常行为以及疾病、残疾和疾病;最适合的参数可以表征
行为的个体差异,并为大脑测量提供标记物。这些模型还可以告知
在单个神经元和神经回路水平上有生物物理基础的神经疾病,
提供对神经元和电路计算的内容以及它们是如何计算的洞察力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gordon Dennis Logan其他文献
Gordon Dennis Logan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gordon Dennis Logan', 18)}}的其他基金
Controlling visual cognition with visual working memory and long-term memory
用视觉工作记忆和长期记忆控制视觉认知
- 批准号:
9247953 - 财政年份:2015
- 资助金额:
$ 38.44万 - 项目类别:
Controlling visual cognition with visual working memory and long-term memory
用视觉工作记忆和长期记忆控制视觉认知
- 批准号:
8863035 - 财政年份:2015
- 资助金额:
$ 38.44万 - 项目类别:
Controlling visual cognition with visual working memory and long-term memory
用视觉工作记忆和长期记忆控制视觉认知
- 批准号:
9039086 - 财政年份:2015
- 资助金额:
$ 38.44万 - 项目类别:
Stochastic Models of Visual Decision Making and Visual Search
视觉决策和视觉搜索的随机模型
- 批准号:
8817898 - 财政年份:2011
- 资助金额:
$ 38.44万 - 项目类别:
Stochastic Models of Visual Decision Making and Visual Search
视觉决策和视觉搜索的随机模型
- 批准号:
10250330 - 财政年份:2011
- 资助金额:
$ 38.44万 - 项目类别:
Stochastic Models of Visual Decision Making and Visual Search
视觉决策和视觉搜索的随机模型
- 批准号:
9187469 - 财政年份:2011
- 资助金额:
$ 38.44万 - 项目类别:
Modeling the Role of Priming in Executive Control
模拟启动在执行控制中的作用
- 批准号:
7439137 - 财政年份:2007
- 资助金额:
$ 38.44万 - 项目类别:
相似海外基金
Practical Study on Disaster Countermeasure Architecture Model by Sustainable Design in Asian Flood Area
亚洲洪泛区可持续设计防灾建筑模型实践研究
- 批准号:
17K00727 - 财政年份:2017
- 资助金额:
$ 38.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional architecture of a face processing area in the common marmoset
普通狨猴面部处理区域的功能架构
- 批准号:
9764503 - 财政年份:2016
- 资助金额:
$ 38.44万 - 项目类别:
Heating and airconditioning by hypocausts in residential and representative architecture in Rome and Latium studies of a phenomenon of luxury in a favoured climatic area of the Roman Empire on the basis of selected examples.
罗马和拉齐奥的住宅和代表性建筑中的火烧供暖和空调根据选定的例子,研究了罗马帝国有利的气候地区的奢华现象。
- 批准号:
317469425 - 财政年份:2016
- 资助金额:
$ 38.44万 - 项目类别:
Research Grants
SBIR Phase II: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第二阶段:用于基于闪存的存储的面积和能源效率高、无错误层的低密度奇偶校验码解码器架构
- 批准号:
1632562 - 财政年份:2016
- 资助金额:
$ 38.44万 - 项目类别:
Standard Grant
SBIR Phase I: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第一阶段:用于基于闪存的存储的面积和能源效率高、无错误层低密度奇偶校验码解码器架构
- 批准号:
1520137 - 财政年份:2015
- 资助金额:
$ 38.44万 - 项目类别:
Standard Grant
A Study on The Spatial Setting and The Inhavitant's of The Flood Prevention Architecture in The Flood Area
洪泛区防洪建筑空间设置及居民生活研究
- 批准号:
26420620 - 财政年份:2014
- 资助金额:
$ 38.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2011
- 资助金额:
$ 38.44万 - 项目类别:
Discovery Grants Program - Individual
A FUNDAMENTAL STUDY ON UTILIZATION OF THE POST-WAR ARCHITECTURE AS URBAN REGENERATION METHOD, A case of the central area of Osaka city
战后建筑作为城市更新方法的基础研究——以大阪市中心区为例
- 批准号:
22760469 - 财政年份:2010
- 资助金额:
$ 38.44万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2010
- 资助金额:
$ 38.44万 - 项目类别:
Discovery Grants Program - Individual
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2009
- 资助金额:
$ 38.44万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




