Point Impact and Sparsity in Functional Data Analysis.
函数数据分析中的点影响和稀疏性。
基本信息
- 批准号:8023927
- 负责人:
- 金额:$ 18.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdultAffectBase PairingBehaviorCancer PatientCharacteristicsChromosomesClinicalCollaborationsCollectionComplexDNA MethylationDataData AnalysesData SetDevelopmentDiagnosisDisease OutcomeDoctor of PhilosophyEpidemiologyEquationFaminesFractalsGene ExpressionGene Expression ProfileGenesGeneticGenomicsGoalsGrowthIntakeJointsLearningLife Cycle StagesLinear RegressionsLiteratureMachine LearningMammary NeoplasmsMeasurementMethodologyMethodsModelingMolecular ProfilingOutcomePerinatalPositioning AttributeProceduresPrognostic MarkerPropertyPublic HealthPublic Health Applications ResearchResolutionStagingStatistical MethodsStudentsSystemTestingTimeWorkbasecardiovascular risk factordata modelingepidemiology studyestrophilinflexibilitygenome-wideimprovedindexinginsightinterestmalignant breast neoplasmneuropsychologicalnovelresponsetheoriestumor
项目摘要
DESCRIPTION (provided by applicant): This is a project to develop new methods of functional data analysis directed towards important public health applications in genomics and life course epidemiology. In genome-wide expression and DNA methylation studies, it is of interest to locate genes showing activity that is associated with clinical outcomes, e.g., to use gene expression profiles from the tumors of breast cancer patients to predict estrogen receptor protein concentration, an important prognostic marker for breast tumors. In such studies, the gene expression profile across a chromosome can be regarded a functional predictor, and a gene associated with the clinical outcome is identified by its base pair position along the chromosome. The key aim of the project is to develop new methods of statisti- cal inference for finding such genetic loci, leading to the identification of chromosomal regions that are potentially useful for diagnosis and therapy. Although there is extensive statistical literature on gene expression data, it is almost exclusively concerned with multiple testing procedures for detecting the presence of differentially expressed genes, and statistical methods for locating such genes based on expression profiles (interpreted as functional predictors) are not well developed. Although functional data analysis has reached a mature stage of development over the last ten years, serious problems can arise when the currently available methods are applied in situations involving functional predictors (or trajectories) that have point impact effects (as with gene expression), or in situations in which there is only sparse temporal resolution in the observation of the trajectories. The broad objectives of the project are to exploit fractal behavior in the trajectories to improve statistical learning methodology in functional data analysis. The project will have important implications for understanding a wide variety of complex adaptive systems having fractal behavior. Studies of calorie-intake trajectories and DNA methylation profiles related to cardiovascular risk outcomes, and growth rate trajectories related to neuropsychological outcomes, will be developed as applications of the new methodology. The first specific problem to be addressed is to show that the rates of learning in systems involving trajectories with fractal characteristics are determined by the Hurst parameter (i.e., the exponent of self-similarity scaling) and to show that a type of bootstrap learning can adapt to the full range of fractal behavior. The second specific problem to be addressed is to develop an imputation method for generating missing values of trajectories that have fractal properties (e.g., growth rate curves), and to find a way to carry out functional regression modeling based on the imputed trajectories. 1
PUBLIC HEALTH RELEVANCE: The relevance of the project to public health is that novel statistical methods will be developed for addressing important questions in genomics and life course epidemiology. In particular, rigorous statistical inference for locating genes based on gene expression and DNA methylation profiles, and for studying the effect of growth rate trajectories on adult neuropsychological outcomes, will be developed.
描述(由申请人提供):这是一个开发功能数据分析新方法的项目,旨在开发基因组学和生命过程流行病学中重要的公共卫生应用。在全基因组表达和DNA甲基化研究中,定位与临床结果相关的活性基因是很有意义的,例如,利用乳腺癌患者肿瘤的基因表达谱来预测雌激素受体蛋白浓度,这是乳腺癌肿瘤的重要预后指标。在这样的研究中,基因在染色体上的表达谱可以被认为是一个功能预测因子,与临床结果相关的基因是通过其碱基对沿染色体的位置来识别的。该项目的主要目的是开发新的统计推断方法,以发现这些遗传位点,从而确定可能对诊断和治疗有用的染色体区域。尽管有大量关于基因表达数据的统计文献,但它几乎完全涉及用于检测差异表达基因存在的多种测试程序,并且基于表达谱(解释为功能预测因子)定位此类基因的统计方法尚未得到很好的发展。虽然功能数据分析在过去十年中已经达到了成熟的发展阶段,但当目前可用的方法应用于涉及具有点影响效应(如基因表达)的功能预测因子(或轨迹)的情况时,或者在轨迹观察中只有稀疏的时间分辨率的情况下,可能会出现严重的问题。该项目的主要目标是利用轨迹中的分形行为来改进功能数据分析中的统计学习方法。该项目将对理解具有分形行为的各种复杂自适应系统具有重要意义。研究与心血管风险结果相关的卡路里摄入轨迹和DNA甲基化谱,以及与神经心理学结果相关的生长速度轨迹,将作为新方法的应用而发展。要解决的第一个具体问题是表明,在涉及具有分形特征的轨迹的系统中,学习速率是由Hurst参数(即自相似尺度指数)决定的,并表明一种类型的自举学习可以适应分形行为的全部范围。第二个需要解决的具体问题是开发一种用于生成具有分形特性的轨迹(例如,增长率曲线)缺失值的输入方法,并找到一种基于输入轨迹进行函数回归建模的方法。1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IAN WRAY MCKEAGUE其他文献
IAN WRAY MCKEAGUE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IAN WRAY MCKEAGUE', 18)}}的其他基金
Inferential methods for functional data from wearable devices
可穿戴设备功能数据的推理方法
- 批准号:
9924432 - 财政年份:2019
- 资助金额:
$ 18.06万 - 项目类别:
Inferential methods for functional data from wearable devices
可穿戴设备功能数据的推理方法
- 批准号:
10605202 - 财政年份:2019
- 资助金额:
$ 18.06万 - 项目类别:
Inferential methods for functional data from wearable devices
可穿戴设备功能数据的推理方法
- 批准号:
10394221 - 财政年份:2019
- 资助金额:
$ 18.06万 - 项目类别:
Point Impact and Sparsity in Functional Data Analysis.
函数数据分析中的点影响和稀疏性。
- 批准号:
8669009 - 财政年份:2011
- 资助金额:
$ 18.06万 - 项目类别:
Point Impact and Sparsity in Functional Data Analysis.
函数数据分析中的点影响和稀疏性。
- 批准号:
8505504 - 财政年份:2011
- 资助金额:
$ 18.06万 - 项目类别:
Point Impact and Sparsity in Functional Data Analysis.
函数数据分析中的点影响和稀疏性。
- 批准号:
8324206 - 财政年份:2011
- 资助金额:
$ 18.06万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
Research Grant














{{item.name}}会员




