Image mapped spectroscopy for snapshot 3-D biomedical imaging
用于快照 3D 生物医学成像的图像映射光谱
基本信息
- 批准号:8047340
- 负责人:
- 金额:$ 20.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-12-15 至 2012-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalBiologicalBiological ModelsBiological SciencesBiomedical EngineeringBiopsyBody cavitiesCardiovascular systemClinicalClinical ManagementCollectionComplexConfocal MicroscopyDataData SetDevelopmentDevicesDiagnosisDiagnosticDiagnostic ImagingDimensionsDiseaseEmerging TechnologiesEndoscopesEndoscopyEnsureEnvironmentEvaluationEventFacultyFundingFutureGeneral HospitalsGrantHeadHead and Neck SurgeryHeightHousingImageIn SituIn VitroKnowledgeLaboratoriesLateralLightingLocationMalignant NeoplasmsMapsMassachusettsMechanicsMethodsMicrofabricationMicroscopeMicroscopyModalityMoldsMorphologic artifactsMotionMouth NeoplasmsOptical Coherence TomographyOpticsOralPerformancePhasePilot ProjectsPositioning AttributeProcessPublishingRefractive IndicesResearchResearch PersonnelResolutionRetinal DiseasesRiceSamplingScanningScreening for cancerScreening procedureSeriesSourceSpecimenSpectrometrySpectrum AnalysisSpeedSystemTechniquesTechnologyTestingThree-Dimensional ImageThree-Dimensional ImagingTimeTissuesTranslational ResearchTranslationsUnited States National Institutes of HealthUniversitiesUniversity of Texas M D Anderson Cancer CenterWorkbasebioimagingbody cavitycostdata acquisitiondesigndetectorevaluation/testingfluorescence imaginghuman tissueimaging modalityimprovedin vivoinstrumentinterestmeetingsminiaturizeoptical imagingpost-doctoral trainingpreclinical studyprofessorprototyperesearch studytissue phantomtissue/cell culturetwo-photon
项目摘要
DESCRIPTION (provided by applicant): High-resolution in vivo imaging of tissue microstructure can potentially improve the diagnosis and management of many diseases. Several techniques aimed at enabling high-resolution in vivo microscopy are under development in laboratory and pre-clinical studies, including confocal microscopy, optical coherence tomography, and multiphoton microscopy. To be clinically useful, these techniques all aim to comprehensively image an entire 3-dimensional volume of tissue; however, none can capture a full 3-D image dataset in a single acquisition event. All require either mechanical scanning of a focused illumination beam across the sample, or scanning of the illumination wavelength, which slows data acquisition, limits sensitivity, increases system cost and complexity, and reduces image quality through the presence of motion artifacts. Here, we propose a method that for the first time will enable high-resolution snapshot 3-D optical imaging, without the requirement for scanning in any spatial dimension or wavelength. The method, which we term Image Mapped Optical Coherence Tomography (IM-OCT) has become possible by the emergence of three enabling technologies, two of which we have been directly involved with: (1) Hyperspectral imaging by image- mapping spectrometry, (2) Fourier-domain OCT, and (3) the availability of high-sensitivity, high-speed CCD and CMOS array detectors. Our long-term hypothesis is that this approach will significantly advance clinicians' ability to perform in situ evaluation of tissue microstructure. Within this R21 project, we aim to carry out the technical development and preliminary testing to establish the capabilities of IM-OCT imaging in biological tissues. In Aim 1, we will design, assemble, and test a prototype snapshot IM-OCT system. This will include in-house fabrication of a key component - an image mapping mirror comprising multiple angled reflected facets. In Aim 2, we will thoroughly test and evaluate the optical and imaging performance of IM-OCT. We will use our precision microfabrication facilities to produce 3-D test objects, to characterize the optical performance of our imaging platform. The test and evaluation process will then continue through a series of increasingly complex biological imaging experiments, from in vitro tissue phantom studies, to a pilot study with ex vivo human tissue specimens.
PUBLIC HEALTH RELEVANCE: High-resolution, instantaneous imaging of tissue microstructure has the potential to aid clinicians in diagnosis and management of many conditions, including cancer, cardiovascular, and retinal diseases. Here, we propose a method that for the first time will provide high-resolution 3-D images of tissue, by acquiring full volumetric image data in a single camera frame capture. We anticipate that this capability will improve the yield of biopsy collection in screening situations, and provide diagnostic information at locations where tissue could not otherwise be removed.
描述(由申请人提供):组织微观结构的高分辨率体内成像可以潜在地改善许多疾病的诊断和管理。在实验室和临床前研究中,正在开发几种旨在实现高分辨率体内显微镜的技术,包括共聚焦显微镜、光学相干断层扫描和多光子显微镜。为了在临床上有用,这些技术都旨在对整个三维组织体积进行全面成像;然而,没有一种技术可以在单个采集事件中捕获完整的3-D图像数据集。所有这些都需要聚焦照明光束在样品上的机械扫描,或者照明波长的扫描,这减慢了数据采集,限制了灵敏度,增加了系统成本和复杂性,并且由于存在运动伪影而降低了图像质量。在这里,我们提出了一种方法,第一次将使高分辨率快照3-D光学成像,而不需要在任何空间维度或波长扫描。该方法,我们称之为图像映射光学相干断层扫描(IM-OCT),已经成为可能的出现,三个使能技术,其中两个我们已经直接参与:(1)高光谱成像的图像映射光谱,(2)傅立叶域OCT,和(3)高灵敏度,高速CCD和CMOS阵列检测器的可用性。我们的长期假设是,这种方法将显着提高临床医生的能力,进行原位评估组织的微观结构。在这个R21项目中,我们的目标是进行技术开发和初步测试,以建立生物组织中IM-OCT成像的能力。在目标1中,我们将设计,组装和测试原型快照IM-OCT系统。这将包括在内部制造一个关键部件-一个图像映射镜包括多个角度的反射面。在目标2中,我们将全面测试和评估IM-OCT的光学和成像性能。我们将使用我们的精密微加工设备生产3D测试对象,以表征我们成像平台的光学性能。测试和评估过程将通过一系列日益复杂的生物成像实验继续进行,从体外组织模型研究到离体人体组织标本的试点研究。
公共卫生关系:组织微观结构的高分辨率瞬时成像有可能帮助临床医生诊断和管理许多疾病,包括癌症、心血管和视网膜疾病。在这里,我们提出了一种方法,第一次将提供高分辨率的3-D图像的组织,通过在一个单一的相机帧捕获采集完整的体积图像数据。我们预计,这种能力将提高筛选情况下活检收集的产量,并提供诊断信息的位置,否则组织不能被删除。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Pierce其他文献
Mark Pierce的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Pierce', 18)}}的其他基金
Image mapped spectroscopy for snapshot 3-D biomedical imaging
用于快照 3D 生物医学成像的图像映射光谱
- 批准号:
8204778 - 财政年份:2010
- 资助金额:
$ 20.8万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 20.8万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 20.8万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 20.8万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 20.8万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 20.8万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 20.8万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 20.8万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 20.8万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 20.8万 - 项目类别:














{{item.name}}会员




