In vivo Detection and Imaging of Epigenetic Histone Modifications and Modifying E
表观遗传组蛋白修饰和修饰 E 的体内检测和成像
基本信息
- 批准号:8144800
- 负责人:
- 金额:$ 53.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAffinityAnimalsBindingBiological AssayBiological SciencesBiomedical EngineeringBuffersCell physiologyCellsCellular biologyChemistryChromatinCollaborationsComplementDetectionDevicesDiploid CellsDiseaseDrosophila genusDyesElectronicsEngineeringEnvironmentEnzymesEpigenetic ProcessEpitopesFluorescenceFluorescence SpectroscopyGenesGeneticGenetic TranscriptionGoalsHealthHistonesHumanImageImageryImaging technologyIn VitroIndividualKnowledgeLibrariesLifeLocationMeasuresMedicalMethodsMicroscopyMolecularMovementNoiseParentsPeptidesPhysicsProteinsRNARNA BindingRNA StabilityReagentRecruitment ActivityRegulationResearchResearch PersonnelResourcesRoleSalivary GlandsSchemeSignal TransductionSorting - Cell MovementSpecificitySpectrum AnalysisStructureSystemTechnologyTestingTimeTissuesTotal Internal Reflection Fluorescentabstractinganalogaptameraqueousbasecyanine dyedesigndesign and constructionfluorophoreflyhistone modificationimaging modalityimprovedin vitro testingin vivoinsightmulti-photonnanofluidicnovelpositional cloningpublic health relevancequantumsingle moleculesmall moleculetooltriphenylmethane
项目摘要
DESCRIPTION (provided by applicant):
Project Summary/Abstract: The main goal of this project is to develop a simple, yet powerful and versatile technology for detection and imaging of epigenetic histone modifications and histone modifying enzymes in living cells. A full understanding of how various histone modifications and the responsible modifying enzymes function require precise knowledge of their localization, movement, and dynamics in a living cell. Current technologies lack the sensitivity and the versatility required to track these targets in their native environment. To achieve these goals, we propose to construct multivalent RNA aptamers comprised of three main features; i) a peptide/protein targeting aptamer, ii) multiple copies of an aptamers that bind and enhance fluorescence of weakly fluorescing analogs of normally highly-fluorescent small molecules (referred to as fluorescent molecule analogs (FMAs)), and iii) a core multi-way RNA junction that combines the previous types of aptamers in a compact structure. We propose to express such multivalent aptamers in cells or whole animals. The MPFAs will also bind FMAs exogenously supplied to cells. Since the FMA binding aptamers will have been selected to enhance dramatically the quantum yield of the FMA molecule upon binding, the MPFAs will render the target visible for detection with fluorescent microscopy. Different combinations of peptide/protein-targeting and FMA-binding aptamers with spectrally separable FMAs will be utilized for multiplex imaging of multiple proteins within the same cell. A key advantage of this approach is that it does not depend on covalent attachment of the imaging moiety, which can interfere with the localization and function of the target protein. The multivalent aptamers can be expressed just prior to imaging and therefore cause little interference with the function of the target protein or the general physiology of the cell. The designed MPFAs will then be tested carefully for in vivo imaging of the select set of histone modification and modifying enzyme targets in Drosophila salivary gland cells and diploid cells. Sensitivity of the proposed technology will be compared to existing detection/imaging methods. The ultimate goal in detection sensitivity is the single-molecule in vivo detection/imaging using MPFAs and exogenously supplied FMAs. The project brings together principle investigators that have complementary expertise in chemistry; design, synthesis and characterization of fluorescent molecules and their derivatives (Lin Lab), in molecular/cell biology; gene and chromatin regulation, genetics and reverse- genetics, RNA aptamer selections, and design and expression of multivalent RNAs (Lis Lab), in applied and engineering physics; design and fabrication of micro- and nano-fluidic mechano-electronic devices (Craighead Lab), in biomedical engineering; fluorescence confocal and multi-photon microscopy and photophysical characterization of FMAs (Zipfel Lab) and a proven record of productive collaborations.
PUBLIC HEALTH RELEVANCE:
Project Narrative: This application titled "In vivo Detection and Imaging of Epigenetic Histone Modifications and Modifying Enzymes Using Multivalent RNA Aptamers" addresses the RFA-RM-09-016: Developing Technologies for Improved In Vivo Epigenetic Imaging or Analysis. The project is expected to have a major impact on medical and life sciences research by developing a sensitive multivalent RNA aptamer-based detection/imaging technology that allows multiplex imaging of two or more epigenetic histone modifications and/or modifying enzymes in vivo. This novel powerful and versatile technology will complement the existing reagents and technologies, overcome many of the technical limitations of existing imaging technologies, and thus provide further insights and a more comprehensive understanding of the epigenetic regulation of histone modifications that relate to human health and diseases.
描述(由申请人提供):
项目摘要/摘要:该项目的主要目标是开发一种简单,功能强大且多才多艺的技术,用于检测和成像表观遗传组蛋白修饰和组蛋白修饰活细胞中的酶。对各种组蛋白修饰和负责任修饰酶功能的充分理解需要精确了解其定位,运动和活细胞中的动态。当前的技术缺乏在本机环境中跟踪这些目标所需的灵敏度和多功能性。为了实现这些目标,我们建议构建由三个主要特征组成的多价RNA适体; i)一种靶向适时的肽/蛋白质,ii)适体的多个拷贝,它们结合并增强了正常高荧光的小分子的弱荧光类似物的荧光(称为荧光分子类似物(FMA)(FMAS),以及III),将核心RNA连接组合为以前的构建类型的核心RNA结构。我们建议在细胞或整个动物中表达这种多价适体。 MPFA还将结合外源供应到细胞的FMA。由于FMA结合适体将被选择以显着增强FMA分子结合后的量子产率,因此MPFA将使靶标可通过荧光显微镜检测可见。肽/蛋白质靶向和FMA结合适体具有不同可分离FMA的不同组合将用于同一细胞内多种蛋白质的多重成像。这种方法的一个关键优点是,它不取决于成像部分的共价附着,这可能会干扰目标蛋白的定位和功能。多价适体可以在成像之前表达,因此很少干扰靶蛋白的功能或细胞的一般生理学。然后,将仔细测试设计的MPFA,以在果蝇唾液腺细胞和二倍体细胞中选择的组蛋白修饰和修饰酶靶标的体内成像。将提议的技术的敏感性与现有检测/成像方法进行比较。检测灵敏度的最终目标是使用MPFA和外源提供的FMA的体内检测/成像中的单分子。该项目汇集了在化学方面具有互补专业知识的主要研究人员;分子/细胞生物学中的荧光分子及其衍生物的设计,合成和表征;在应用和工程物理学中,基因和染色质调节,遗传学和反向遗传学,RNA适体选择以及多价RNA(LIS LAB)的设计和表达;生物医学工程中的微富集机械设备(Craighead Lab)的设计和制造; FMA(Zipfel Lab)的荧光共聚焦和多光子显微镜以及光物理表征以及可靠的生产性合作记录。
公共卫生相关性:
项目叙述:该应用程序的标题为“体内检测和对表观遗传组蛋白修饰的成像和使用多价RNA适体修饰酶的成像”解决了RFA-RM-09-016:开发技术以改善体内表观遗传学成像或分析。预计该项目将通过开发一种敏感的基于RNA适体的检测/成像技术对医学和生命科学研究产生重大影响,该技术允许对两个或多个表观遗传组蛋白修饰和/或体内修饰酶进行多重成像。这种新颖的功能多功能技术将补充现有的试剂和技术,克服现有成像技术的许多技术局限性,从而提供进一步的见解,并更全面地了解与人类健康和疾病有关的组蛋白修饰的表观遗传调节。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HAROLD G CRAIGHEAD其他文献
HAROLD G CRAIGHEAD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HAROLD G CRAIGHEAD', 18)}}的其他基金
Adaptable and scalable electroporation for cellular therapy
用于细胞治疗的适应性和可扩展的电穿孔
- 批准号:
10545845 - 财政年份:2022
- 资助金额:
$ 53.14万 - 项目类别:
Tools for Single Molecule and Single Cell Epigenomic Analysis
单分子和单细胞表观基因组分析工具
- 批准号:
8340779 - 财政年份:2012
- 资助金额:
$ 53.14万 - 项目类别:
Tools for Single Molecule and Single Cell Epigenomic Analysis
单分子和单细胞表观基因组分析工具
- 批准号:
8683212 - 财政年份:2012
- 资助金额:
$ 53.14万 - 项目类别:
Tools for Single Molecule and Single Cell Epigenomic Analysis
单分子和单细胞表观基因组分析工具
- 批准号:
8534233 - 财政年份:2012
- 资助金额:
$ 53.14万 - 项目类别:
In vivo Detection and Imaging of Epigenetic Histone Modifications and Modifying E
表观遗传组蛋白修饰和修饰 E 的体内检测和成像
- 批准号:
8269067 - 财政年份:2010
- 资助金额:
$ 53.14万 - 项目类别:
In vivo Detection and Imaging of Epigenetic Histone Modifications and Modifying E
表观遗传组蛋白修饰和修饰 E 的体内检测和成像
- 批准号:
8471090 - 财政年份:2010
- 资助金额:
$ 53.14万 - 项目类别:
In vivo Detection and Imaging of Epigenetic Histone Modifications and Modifying E
表观遗传组蛋白修饰和修饰 E 的体内检测和成像
- 批准号:
8663853 - 财政年份:2010
- 资助金额:
$ 53.14万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Antibody-based therapy for fentanyl-related opioid use disorder
基于抗体的芬太尼相关阿片类药物使用障碍治疗
- 批准号:
10831206 - 财政年份:2023
- 资助金额:
$ 53.14万 - 项目类别:
Mechanisms and manipulation of force dependent behavior in T cell biology
T 细胞生物学中力依赖性行为的机制和操纵
- 批准号:
10681766 - 财政年份:2023
- 资助金额:
$ 53.14万 - 项目类别:
Elucidation and improved control of human induced pluripotent stem cell cardiac differentiation by using single-guide RNA-based cellular barcoding to track and manipulate lineages
通过使用基于单向导 RNA 的细胞条形码来跟踪和操纵谱系,阐明并改进对人类诱导多能干细胞心脏分化的控制
- 批准号:
10752369 - 财政年份:2023
- 资助金额:
$ 53.14万 - 项目类别:
Maturation of human humoral immunity through repeat malaria challenges
通过重复疟疾挑战使人体体液免疫成熟
- 批准号:
10720245 - 财政年份:2023
- 资助金额:
$ 53.14万 - 项目类别:
ST6GalNAc-I/MUC5AC promoting angiogenesis in lung adenocarcinoma
ST6GalNAc-I/MUC5AC促进肺腺癌血管生成
- 批准号:
10513140 - 财政年份:2022
- 资助金额:
$ 53.14万 - 项目类别: