Human Pluripotent Stem Cell Differentiation with Defined O2 & Protein Engagement
使用特定 O2 进行人类多能干细胞分化
基本信息
- 批准号:7814661
- 负责人:
- 金额:$ 97.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-09 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:AcrylatesAddressAdsorptionAffectAreaBiocompatible MaterialsBiological AssayBiological ModelsBiomedical EngineeringCardiacCardiac MyocytesCell CommunicationCell CountCell Culture SystemCell Culture TechniquesCell TherapyCell surfaceCellsCulture MediaCultured CellsDataDevelopmentDevelopmental BiologyDiabetes MellitusDiseaseEmbryoEnvironmentEquipmentExtracellular MatrixExtracellular Matrix ProteinsFibroblastsGasesGene ExpressionGoalsGrowthHealthHeart DiseasesHereditary DiseaseHip region structureHumanHypoxiaIn VitroKnowledgeLaboratoriesLeadLearningMaintenanceMembraneMethodsMusMyocardial IschemiaOxygenParkinson DiseasePartial PressurePatternPermeabilityPhasePhysiologicalPlayPluripotent Stem CellsPolymersPreclinical Drug EvaluationProcessProtein MicrochipsProteinsProtocols documentationResearchResearch InfrastructureResidual stateRoleSilicone ElastomersStem cellsSurfaceSurface PropertiesSystemTechniquesTechnologyTestingTherapeuticTissuesUndifferentiatedUnited StatesValidationVariantWorkWound Healingcell growthcombinatorialdesignembryonic stem cellextracellularhuman diseasehuman embryonic stem cellhuman stem cellsimprovedin vitro Modelin vivointerestmatrigelnovelprofessorpublic health relevancerelating to nervous systemresearch studyself-renewalstemstem cell biologystem cell differentiationstem cell technologytooltumorigenic
项目摘要
DESCRIPTION (provided by applicant): This application addresses broad Challenge Area (14) Stem Cells and specific Challenge Topic, 14-DE-103: Enhancing Human Embryonic Stem (ES) Cell Culture Systems. The overall objective of this proposal is to develop and optimize a feeder-free in vitro culture system with a controlled culture microenvironment for human pluripotent stem cell growth and directed differentiation. In particular, high-throughput approaches will be used to develop culture materials with optimized surface properties incorporating defined extracellular matrix (ECM) components that allow for accurate control of oxygen partial pressure of the cell surface (pO2cell) to provide more physiological conditions and allow strategies to better mimic normal development processes. The developing embryo is exposed in vivo to very low oxygen levels, and there is growing evidence that oxygen concentration, together with cell-protein interactions, are important factors in differentiation and proliferation. In typical culture systems, pO2cell is unknown because of gradients in the culture medium. Currently, there are no commercially available methods or equipment for culturing cells under known, hypoxic conditions. Membranes of silicone rubber, which have very high oxygen permeability, will be used as a culture substrate so that cells are exposed to the same oxygen level as in the gas phase. Silicone rubber surfaces will be investigated in various forms: (1) unmodified, (2) chemically modified and functionalized with synthetic polymers, and (3) chemically modified with synthetic polymers to which ECM components are attached by physical adsorption or covalent linkage, including defined proteins and mixtures thereof. Cell compatible, ECM protein microarrays on functionalized silicone rubber will be created with a high-throughput microarray platform that we previously developed for culture of cells in order to screen a large number of cell-ECM-biomaterial interactions. The various cell substrates will be examined for cellular attachment, proliferation, and gene expression patterns at various levels of pO2cell using combinatorial techniques. Confirmatory experiments in macro-scale culture using culture vessels will be carried out with the most promising combinations. Similar experiments with the high-throughput microarray platform and culture vessels will be carried out for differentiation of human pluripotent stem cells to cardiomyocytes, which has been shown to benefit from hypoxic culture, as a model system. Accomplishment of the goal of the proposed studies will lead to elimination of conventional feeder layers and undefined xenogenic proteins and to the development and validation of a more well-defined and physiological culture platform for simultaneous variation and study of soluble factors, ECM-cell interactions, and pO2cell, thereby enabling enhancement of our understanding of the role of these factors in maintenance and differentiation of human pluripotent stem cells. This novel, generally applicable platform, will upgrade the capability and quantity of research in this field. Pluripotent stem cells hold enormous promise for drug screening, in vitro modeling of genetic disorders, and cell therapies and the proposed research will have wide impact on human health. At its most basic level, this research will provide information about the interaction of biomaterials, ECM components, and undifferentiated or differentiating human pluripotent stem cells at different known values of pO2cell that mimic physiological conditions, data for which has not previously been available except under normoxic culture. This information will advance our knowledge in the fields of developmental and stem cell biology as well as human pluripotent stem cell technology. In particular, we expect to learn how the choice of ECM proteins and pO2cell levels interact to aid directed differentiation. From a broader standpoint, the proposed high-throughput platform and macro-scale culture vessels that derive therefrom are tools that constitute enabling technology to culture human pluripotent stem cells under defined physiological conditions. They will improve the research infrastructure in terms of the capability for culturing human pluripotent stem cells. The knowledge acquired and tools developed may have profound effects on a wide variety of applications in many fields of human health. This will accelerate developments in applications such as drug screening, in vitro models of genetic disease, therapeutic replacement of diseased cells in major diseases such as heart disease, diabetes, and neural diseases such as Parkinson's, which annually affect millions of people in the United States. Indeed, differentiation of human pluripotent stem cells to cardiomyocytes, the proposed model system, is itself of high interest for generating cells and tissues for repair of cardiac tissues following ischemic heart disease. Furthermore, the culture vessels to be tested will be useful in culturing cardiac tissue. This collaborative study will integrate recent progress in the fields of bioengineering, biomaterials, and developmental biology to design a new culture platform and protocols that will facilitate cell-based therapies for treatment of a multitude of human diseases and other ES cell applications.
PUBLIC HEALTH RELEVANCE: This project concerns improved methods to work with human stem cells so that they can develop into medically useful cells and tissues. For example, this can lead to ways to grow functioning heart muscle cells that can be used to treat heart disease.
描述(由申请人提供):本申请涉及广泛的挑战领域 (14) 干细胞和特定挑战主题 14-DE-103:增强人类胚胎干 (ES) 细胞培养系统。该提案的总体目标是开发和优化无饲养层体外培养系统,具有受控的培养微环境,用于人类多能干细胞的生长和定向分化。特别是,高通量方法将用于开发具有优化表面特性的培养材料,其中包含确定的细胞外基质(ECM)成分,允许精确控制细胞表面的氧分压(pO2cell),以提供更多的生理条件,并允许策略更好地模拟正常发育过程。发育中的胚胎在体内暴露于非常低的氧气水平,并且越来越多的证据表明氧气浓度以及细胞-蛋白质相互作用是分化和增殖的重要因素。在典型的培养系统中,由于培养基中的梯度,pO2cell 是未知的。目前,没有商业上可用的方法或设备用于在已知的低氧条件下培养细胞。硅橡胶膜具有非常高的透氧性,将用作培养基质,使细胞暴露在与气相相同的氧气水平中。硅橡胶表面将以各种形式进行研究:(1)未改性,(2)化学改性并用合成聚合物进行功能化,以及(3)用合成聚合物进行化学改性,其中ECM成分通过物理吸附或共价键连接到其上,包括特定的蛋白质及其混合物。功能化硅橡胶上的细胞兼容的 ECM 蛋白质微阵列将使用我们之前为细胞培养开发的高通量微阵列平台来创建,以便筛选大量细胞-ECM-生物材料相互作用。将使用组合技术检查各种细胞基质的细胞附着、增殖和不同水平的 pO2cell 的基因表达模式。使用培养皿进行大规模培养的验证性实验将采用最有希望的组合进行。将使用高通量微阵列平台和培养容器进行类似的实验,以将人类多能干细胞分化为心肌细胞,作为模型系统,心肌细胞已被证明受益于低氧培养。所提出研究目标的实现将导致消除传统的饲养层和未定义的异种蛋白,并开发和验证一个更明确的生理培养平台,用于可溶性因子、ECM-细胞相互作用和 pO2cell 的同时变化和研究,从而增强我们对这些因子在人类多能干细胞的维持和分化中的作用的理解。这一新颖、普遍适用的平台将提升该领域的研究能力和数量。多能干细胞在药物筛选、遗传性疾病体外建模和细胞疗法方面具有巨大前景,拟议的研究将对人类健康产生广泛影响。在最基本的层面上,这项研究将提供有关生物材料、ECM 成分以及未分化或分化的人类多能干细胞在模拟生理条件的不同已知 pO2cell 值下的相互作用的信息,这些数据除了在常氧培养下之外以前无法获得。这些信息将增进我们在发育和干细胞生物学以及人类多能干细胞技术领域的知识。特别是,我们希望了解 ECM 蛋白的选择和 pO2 细胞水平如何相互作用以帮助定向分化。从更广泛的角度来看,所提出的高通量平台和由此衍生的宏观培养容器是构成在特定生理条件下培养人类多能干细胞的技术的工具。他们将改善人类多能干细胞培养能力方面的研究基础设施。获得的知识和开发的工具可能对人类健康许多领域的广泛应用产生深远的影响。这将加速药物筛选、遗传疾病体外模型、心脏病、糖尿病等重大疾病和帕金森病等神经疾病中患病细胞的治疗性替代等应用的发展,这些疾病每年影响数百万人。事实上,人类多能干细胞向心肌细胞的分化(所提出的模型系统)本身对于生成用于修复缺血性心脏病后心脏组织的细胞和组织具有很高的兴趣。此外,待测试的培养容器将可用于培养心脏组织。这项合作研究将整合生物工程、生物材料和发育生物学领域的最新进展,设计一个新的培养平台和方案,以促进基于细胞的疗法治疗多种人类疾病和其他胚胎干细胞应用。
公共健康相关性:该项目涉及改进人类干细胞的使用方法,以便它们能够发育成医学上有用的细胞和组织。例如,这可以找到培养可用于治疗心脏病的功能性心肌细胞的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL G ANDERSON其他文献
DANIEL G ANDERSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL G ANDERSON', 18)}}的其他基金
Nonviral delivery techniques for in vivo prime editing
用于体内引物编辑的非病毒传递技术
- 批准号:
10548169 - 财政年份:2022
- 资助金额:
$ 97.51万 - 项目类别:
Nonviral delivery techniques for in vivo prime editing
用于体内引物编辑的非病毒传递技术
- 批准号:
10344605 - 财政年份:2022
- 资助金额:
$ 97.51万 - 项目类别:
SMART BIOELECTRONIC IMPLANTS FOR CONTROLLED DELIVERY OF THERAPEUTIC PROTEINS IN VIVO AND ITS APPLICATION IN LONG-TERM TREATMENT OF HEMOPHILIA A
用于体内治疗性蛋白质控制输送的智能生物电子植入物及其在血友病 A 长期治疗中的应用
- 批准号:
10446179 - 财政年份:2022
- 资助金额:
$ 97.51万 - 项目类别:
SMART BIOELECTRONIC IMPLANTS FOR CONTROLLED DELIVERY OF THERAPEUTIC PROTEINS IN VIVO AND ITS APPLICATION IN LONG-TERM TREATMENT OF HEMOPHILIA A
用于体内治疗性蛋白质控制输送的智能生物电子植入物及其在血友病 A 长期治疗中的应用
- 批准号:
10615840 - 财政年份:2022
- 资助金额:
$ 97.51万 - 项目类别:
Combinatorial and computational design of bnAb mRNA vaccines for HIV
HIV bnAb mRNA 疫苗的组合和计算设计
- 批准号:
10592273 - 财政年份:2021
- 资助金额:
$ 97.51万 - 项目类别:
Combinatorial and computational design of bnAb mRNA vaccines for HIV
HIV bnAb mRNA 疫苗的组合和计算设计
- 批准号:
10386924 - 财政年份:2021
- 资助金额:
$ 97.51万 - 项目类别:
Develop combinatorial non-viral and viral CRISPR delivery for lung diseases
开发针对肺部疾病的组合非病毒和病毒 CRISPR 递送
- 批准号:
10274832 - 财政年份:2018
- 资助金额:
$ 97.51万 - 项目类别:
Interfering with the macrophage life cycle of atherosclerosis
干扰动脉粥样硬化的巨噬细胞生命周期
- 批准号:
9412185 - 财政年份:2017
- 资助金额:
$ 97.51万 - 项目类别:
High throughput microfluidic intracellular delivery platform
高通量微流控细胞内递送平台
- 批准号:
8706186 - 财政年份:2013
- 资助金额:
$ 97.51万 - 项目类别:
High throughput microfluidic intracellular delivery platform
高通量微流控细胞内递送平台
- 批准号:
8504309 - 财政年份:2013
- 资助金额:
$ 97.51万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 97.51万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 97.51万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 97.51万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 97.51万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 97.51万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 97.51万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 97.51万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 97.51万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 97.51万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 97.51万 - 项目类别:
Research Grant