Bayesian Adaptive Designs for Oncology Clinical Trials with Late-onset Outcomes

具有迟发结果的肿瘤学临床试验的贝叶斯自适应设计

基本信息

  • 批准号:
    8116172
  • 负责人:
  • 金额:
    $ 29.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-04-01 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The primary objectives of this proposal are to develop robust and efficient Bayesian adaptive designs for early phase oncology clinical trials with late-onset outcomes, and to propose a semi-parametric estimate of the dose-response curve. Conventional early phase trial designs typically assume that the toxicity and efficacy outcomes are observed shortly after the initiation of the treatment in order to assign an appropriate dose to patients newly enrolled in the trial. However, late-onset toxicity and efficacy are common in phase I studies. In the presence of late onset toxicity, using conventional trial designs may underestimate the toxicity probabilities, which would cause an undesirably large number of patients to be treated at overly toxic doses; and late onset efficacy often leads investigators to underestimate treatment efficacy and to incorrectly terminate a trial early. Moreover, parametric dose-toxicity and dose-efficacy model assumptions employed by many available early phase trial designs are not desirable, as asymptotic properties are generally not applicable for small sample sizes in early-phase trials. Misspecification of the dose-toxicity and dose-efficacy models may lead to poor operating characteristics of the trial. In this proposal, we develop robust and efficient Bayesian adaptive designs for phase I or phase I/II oncology clinical trials with late-onset outcomes. We formulate late-onset outcomes as a missing data problem and rigorously investigate characteristics and theories of the missing data induced by the late-onset outcomes. Based upon these investigations, we propose single- and multiple-agent phase I dose-finding trial designs, in which late-onset toxicity is addressed by the Bayesian data augmentation and the EM algorithm. To improve the robustness of the proposed trial designs, we propose to consider multiple dose-toxicity models simultaneously and then use Bayesian model averaging and model selection procedures to obtain robust estimates and desirable operating characteristics. Another common problem of interest in early-phase clinical trials is to estimate the relationship between the dose level of a drug and the probability of a response (e.g., toxicity or efficacy). We propose an efficient and robust semi-parametric approach that combines the advantages of parametric and nonparametric approaches. Our estimate of the dose-response curve is a weighted average of the parametric estimate and nonparametric estimate. When the true curve follows a parametric model assumption, the estimate converges to the parametric estimate, thus achieving high efficiency. When the parametric model does not hold, the estimate converges to the nonparametric estimate, thereby still providing a consistent estimate of the true dose response curve. PUBLIC HEALTH RELEVANCE: Cancer has been the second deaths-leading cause in U.S. The proposed research aims to provide more efficient, robust and innovative Bayesian cancer clinical trial designs to help physicians to develop new drugs and therapies to cure cancer.
描述(由申请人提供):本提案的主要目的是为具有迟发型结局的早期肿瘤学临床试验开发稳健有效的贝叶斯自适应设计,并提出剂量-反应曲线的半参数估计。传统的早期试验设计通常假设在治疗开始后不久观察到毒性和疗效结局,以便为新入组试验的患者分配适当的剂量。然而,迟发性毒性和疗效在I期研究中很常见。在存在迟发型毒性的情况下,使用常规试验设计可能会低估毒性概率,这将导致大量患者以过度毒性剂量接受治疗;迟发型疗效通常会导致研究者低估治疗疗效,并错误地提前终止试验。此外,许多可用的早期试验设计所采用的参数剂量毒性和剂量疗效模型假设是不可取的,因为渐近性质通常不适用于早期试验中的小样本量。剂量-毒性和剂量-疗效模型的错误设定可能导致试验的操作特征不佳。在这个提案中,我们为具有迟发性结局的I期或I/II期肿瘤学临床试验开发了鲁棒且高效的贝叶斯自适应设计。我们将迟发性结局表述为缺失数据问题,并严格研究迟发性结局引起的缺失数据的特征和理论。基于这些调查,我们提出了单药和多药I期剂量探索试验设计,其中迟发性毒性通过贝叶斯数据增强和EM算法来解决。为了提高拟议的试验设计的稳健性,我们建议同时考虑多个剂量-毒性模型,然后使用贝叶斯模型平均和模型选择程序,以获得稳健的估计和理想的操作特性。在早期临床试验中感兴趣的另一个常见问题是估计药物的剂量水平和响应概率之间的关系(例如,毒性或功效)。我们提出了一个有效的和强大的半参数方法,结合参数和非参数方法的优点。我们对剂量-反应曲线的估计是参数估计和非参数估计的加权平均。当真曲线遵循参数模型假设时,估计收敛于参数估计,从而实现高效率。当参数模型不成立时,估计值收敛于非参数估计值,从而仍然提供真实剂量反应曲线的一致估计值。 公共卫生关系:癌症一直是美国第二大死亡原因,拟议的研究旨在提供更有效,更强大和创新的贝叶斯癌症临床试验设计,以帮助医生开发治疗癌症的新药和疗法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ying Yuan其他文献

Ying Yuan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ying Yuan', 18)}}的其他基金

Bioinformatics and Biostatistics Core
生物信息学和生物统计学核心
  • 批准号:
    10709233
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
Core 2: Biostatistics and Bioinformatics Core
核心2:生物统计学和生物信息学核心
  • 批准号:
    10226086
  • 财政年份:
    2019
  • 资助金额:
    $ 29.51万
  • 项目类别:
Core 2: Biostatistics and Bioinformatics Core
核心2:生物统计学和生物信息学核心
  • 批准号:
    10415967
  • 财政年份:
    2019
  • 资助金额:
    $ 29.51万
  • 项目类别:
Core 2: Bioinformatics and Biostatistics Core
核心2:生物信息学和生物统计学核心
  • 批准号:
    10251113
  • 财政年份:
    2017
  • 资助金额:
    $ 29.51万
  • 项目类别:
Core 2: Bioinformatics and Biostatistics Core
核心2:生物信息学和生物统计学核心
  • 批准号:
    10005293
  • 财政年份:
    2017
  • 资助金额:
    $ 29.51万
  • 项目类别:
Bayesian Adaptive Designs for Oncology Clinical Trials with Late-onset Outcomes
具有迟发结果的肿瘤学临床试验的贝叶斯自适应设计
  • 批准号:
    8230478
  • 财政年份:
    2011
  • 资助金额:
    $ 29.51万
  • 项目类别:
Bayesian Adaptive Designs for Oncology Clinical Trials with Late-onset Outcomes
具有迟发结果的肿瘤学临床试验的贝叶斯自适应设计
  • 批准号:
    8635983
  • 财政年份:
    2011
  • 资助金额:
    $ 29.51万
  • 项目类别:
Bayesian Adaptive Designs for Oncology Clinical Trials with Late-onset Outcomes
具有迟发结果的肿瘤学临床试验的贝叶斯自适应设计
  • 批准号:
    8446461
  • 财政年份:
    2011
  • 资助金额:
    $ 29.51万
  • 项目类别:
Biostatistics and Bioinformatics Core
生物统计学和生物信息学核心
  • 批准号:
    10006200
  • 财政年份:
    2003
  • 资助金额:
    $ 29.51万
  • 项目类别:
Biostatistics and Bioinformatics Core
生物统计学和生物信息学核心
  • 批准号:
    9146632
  • 财政年份:
    2003
  • 资助金额:
    $ 29.51万
  • 项目类别:

相似海外基金

Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
  • 批准号:
    DP240100640
  • 财政年份:
    2024
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
  • 批准号:
    23K01889
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
  • 批准号:
    10452217
  • 财政年份:
    2022
  • 资助金额:
    $ 29.51万
  • 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
  • 批准号:
    10670838
  • 财政年份:
    2022
  • 资助金额:
    $ 29.51万
  • 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
  • 批准号:
    DP200100492
  • 财政年份:
    2020
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
  • 批准号:
    407264
  • 财政年份:
    2019
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
  • 批准号:
    18K18240
  • 财政年份:
    2018
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
  • 批准号:
    17K12379
  • 财政年份:
    2017
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
  • 批准号:
    17K13937
  • 财政年份:
    2017
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
  • 批准号:
    8742767
  • 财政年份:
    2014
  • 资助金额:
    $ 29.51万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了