Bioactive Gels that Promote Long-Term Islet Survival and Function

促进胰岛长期存活和功能的生物活性凝胶

基本信息

  • 批准号:
    8011438
  • 负责人:
  • 金额:
    $ 37.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-01-07 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Recent advances in biomaterial science suggest opportunities to create synthetic niches for islet delivery that not only provide a physical barrier to permit short-term islet survival, but a biologically-controlled microenvironment that actively promotes long-term islet survival and function while biochemically modulating the local effects of the immune response. We hypothesize that a synthetic poly(ethylene glycol) (PEG) hydrogel niche, modified with critical extracellular matrix molecules to promote islet function and biological signals to suppress cell damage from stresses of the immune system, will support the long-term survival and function of transplanted islets. To test this hypothesis, gel niches that introduce both cell-cell and cell-matrix interactions will be synthesized, and functions critical to the overall success of islet transplantation therapies will be monitored: cell survival and metabolic activity, insulin secretion in response to glucose and other stimuli, and analysis of intracellular events that translate these extracellular stimuli into insulin release, such as intracellular calcium concentration (Aim 1). Through these experiments, we will identify `permissive' hydrogel chemistries, defined as ones that support islet survival and function over the course of 1 month in vitro. Aim 2 will test the ability of these permissive formulations to support islet function under physiological stress. Activated islet-specific T cell lines will be used in co-culture with the capsules to evaluate the immunoprotective capabilities of the PEG capsule. The biophysical properties (e.g., crosslinking density) of the gels will be varied, and the relative role of hypoxia will be examined. With this understanding, these permitting gel formulations will be further modified with immune modulatory antibodies and enzymes and anti-inflammatory anti-oxidative enzymes to establish new strategies to actively promote islet function and long-term survival by locally suppressing the effects of the cells of the host immune and inflammatory responses. These studies build on the base of knowledge gained from Aim 2, which identifies the cellular stresses that are most pressing and provides the directional framework for selected functional modifications of the capsule (Aim 3). Finally, the effectiveness of the `promoting' gel carriers that support and protect islet survivability and function will then be tested in a diabetic animal model (Aim 4).This proposal aims to prepare biomaterial devices that incorporate signals to actively promote the function of insulin-producing cells and improve the performance of devices transplanted into diabetic patients. If successful, this strategy will prolong the duration and function of transplanted pancreatic tissue without the need for life-long administration of immunosuppressive drugs.
DESCRIPTION (provided by applicant): Recent advances in biomaterial science suggest opportunities to create synthetic niches for islet delivery that not only provide a physical barrier to permit short-term islet survival, but a biologically-controlled microenvironment that actively promotes long-term islet survival and function while biochemically modulating the local effects of the immune response. We hypothesize that a synthetic poly(ethylene glycol) (PEG) hydrogel niche, modified with critical extracellular matrix molecules to promote islet function and biological signals to suppress cell damage from stresses of the immune system, will support the long-term survival and function of transplanted islets. To test this hypothesis, gel niches that introduce both cell-cell and cell-matrix interactions will be synthesized, and functions critical to the overall success of islet transplantation therapies will be monitored: cell survival and metabolic activity, insulin secretion in response to glucose and other stimuli, and analysis of intracellular events that translate these extracellular stimuli into insulin release, such as intracellular calcium concentration (Aim 1). Through these experiments, we will identify `permissive' hydrogel chemistries, defined as ones that support islet survival and function over the course of 1 month in vitro. Aim 2 will test the ability of these permissive formulations to support islet function under physiological stress. Activated islet-specific T cell lines will be used in co-culture with the capsules to evaluate the immunoprotective capabilities of the PEG capsule. The biophysical properties (e.g., crosslinking density) of the gels will be varied, and the relative role of hypoxia will be examined. With this understanding, these permitting gel formulations will be further modified with immune modulatory antibodies and enzymes and anti-inflammatory anti-oxidative enzymes to establish new strategies to actively promote islet function and long-term survival by locally suppressing the effects of the cells of the host immune and inflammatory responses. These studies build on the base of knowledge gained from Aim 2, which identifies the cellular stresses that are most pressing and provides the directional framework for selected functional modifications of the capsule (Aim 3). Finally, the effectiveness of the `promoting' gel carriers that support and protect islet survivability and function will then be tested in a diabetic animal model (Aim 4).This proposal aims to prepare biomaterial devices that incorporate signals to actively promote the function of insulin-producing cells and improve the performance of devices transplanted into diabetic patients. If successful, this strategy will prolong the duration and function of transplanted pancreatic tissue without the need for life-long administration of immunosuppressive drugs.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KRISTI S. ANSETH其他文献

KRISTI S. ANSETH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KRISTI S. ANSETH', 18)}}的其他基金

Clickable Microgel Scaffolds for MSC Expansion and Delivery
用于 MSC 扩展和交付的可点击微凝胶支架
  • 批准号:
    9884753
  • 财政年份:
    2019
  • 资助金额:
    $ 37.7万
  • 项目类别:
Photoresponsive materials to study matricellular signaling dynamics during crypt formation and fission
用于研究隐窝形成和裂变过程中基质细胞信号动力学的光响应材料
  • 批准号:
    10737202
  • 财政年份:
    2019
  • 资助金额:
    $ 37.7万
  • 项目类别:
Clickable Microgel Scaffolds for MSC Expansion and Delivery
用于 MSC 扩展和交付的可点击微凝胶支架
  • 批准号:
    10356090
  • 财政年份:
    2019
  • 资助金额:
    $ 37.7万
  • 项目类别:
Synthetic hydrogels to study formation and maintenance of intestinal crypts
用于研究肠隐窝的形成和维持的合成水凝胶
  • 批准号:
    10418728
  • 财政年份:
    2019
  • 资助金额:
    $ 37.7万
  • 项目类别:
Synthetic hydrogels to study formation and maintenance of intestinal crypts
用于研究肠隐窝的形成和维持的合成水凝胶
  • 批准号:
    9981736
  • 财政年份:
    2019
  • 资助金额:
    $ 37.7万
  • 项目类别:
Clickable Microgel Scaffolds for MSC Expansion and Delivery
用于 MSC 扩展和交付的可点击微凝胶支架
  • 批准号:
    10584600
  • 财政年份:
    2019
  • 资助金额:
    $ 37.7万
  • 项目类别:
Synthetic hydrogels to study formation and maintenance of intestinal crypts
用于研究肠隐窝的形成和维持的合成水凝胶
  • 批准号:
    10164770
  • 财政年份:
    2019
  • 资助金额:
    $ 37.7万
  • 项目类别:
Hydrogels to Study Synergistic Effects of Signaling Factors and Matrix Mechanics on Valve Disease Progression
水凝胶研究信号因子和基质力学对瓣膜疾病进展的协同作用
  • 批准号:
    9247569
  • 财政年份:
    2016
  • 资助金额:
    $ 37.7万
  • 项目类别:
Hydrogels to Study Synergistic Effects of Signaling Factors and Matrix Mechanics on Valve Disease Progression
水凝胶研究信号因子和基质力学对瓣膜疾病进展的协同作用
  • 批准号:
    9397567
  • 财政年份:
    2016
  • 资助金额:
    $ 37.7万
  • 项目类别:
Protease Activity in 3D Matrices
3D 矩阵中的蛋白酶活性
  • 批准号:
    8684387
  • 财政年份:
    2014
  • 资助金额:
    $ 37.7万
  • 项目类别:

相似海外基金

Étude des interactions de sorption et de séquestration de polluants sur des alginates
海藻酸盐污染物吸附与封存相互作用研究
  • 批准号:
    571945-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 37.7万
  • 项目类别:
    University Undergraduate Student Research Awards
Engineering an Islet Thread from zwitterionically modified alginates for type 1 diabetes
利用两性离子改性藻酸盐设计胰岛丝,用于治疗 1 型糖尿病
  • 批准号:
    9910390
  • 财政年份:
    2018
  • 资助金额:
    $ 37.7万
  • 项目类别:
Engineering an Islet Thread from zwitterionically modified alginates for type 1 diabetes
利用两性离子改性藻酸盐设计胰岛丝,用于治疗 1 型糖尿病
  • 批准号:
    10402773
  • 财政年份:
    2018
  • 资助金额:
    $ 37.7万
  • 项目类别:
ALGIPRO - Alginates by Production Scale Fermentation and Epimerisation
ALGIPRO - 通过生产规模发酵和差向异构化生产海藻酸盐
  • 批准号:
    102148
  • 财政年份:
    2016
  • 资助金额:
    $ 37.7万
  • 项目类别:
    Collaborative R&D
Bioactive Alginates and Obesity
生物活性藻酸盐与肥胖
  • 批准号:
    BB/G00563X/1
  • 财政年份:
    2008
  • 资助金额:
    $ 37.7万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了