Engineered gene circuits for basic science and biotechnology
用于基础科学和生物技术的工程基因电路
基本信息
- 批准号:8712506
- 负责人:
- 金额:$ 47.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptedAntisense RNABacteriaBacterial GenomeBasic ScienceBehaviorBindingBiological ClocksBiosensorBiotechnologyCellsCharacteristicsChemicalsChinese Hamster Ovary CellCommunicationCommunitiesComplexComputer SimulationCouplingDNA-Directed RNA PolymeraseDataDevelopmentDevicesDiseaseDrug Delivery SystemsElementsEngineered GeneEngineeringEscherichia coliFeedbackFluorescence MicroscopyFrequenciesGene DeliveryGene ExpressionGene Expression RegulationGenerationsGeneticGenomeGrantHousingHumanHybridsIndividualLeadLifeLightLogicMammalian CellMediatingMedicalMethodsMicrofluidic MicrochipsMicrofluidicsMicroscopyModelingMolecular BiologyMolecular Biology TechniquesMonitorOxidation-ReductionPatternPhasePopulationProductionProteinsSignal TransductionSmall Interfering RNASynthetic GenesSystemTechnologyTestingTherapeuticTranslationsWorkbasechromatin remodelingdesigndesign and constructiongene therapyimprovedinterdisciplinary approachlight entrainmentmathematical modelmolecular dynamicsnoveloptogeneticspromoterquorum sensingresearch studyspatiotemporalsuccesssynthetic biologytime usetool
项目摘要
DESCRIPTION (provided by applicant): In the proposed project, we will continue to design, construct and characterize genetic circuits. We will use microfluidic tools to grow and observe single cells in precisely controlled environmental conditions. Single cell data will inform a set o mathematical models that will be used to identify key design characteristics, which will then be rigorously, tested using previously established molecular biology techniques. This multi- disciplinary approach will increase our understanding of gene regulation and lead to new tools for the synthetic biology community. Our first aim will be to explore the interaction of "nested clocks". We previously constructed a robust intracellular clock and an intercellularly synchronized colony of clocks. Characterization of these systems revealed that the native enzymatic machinery induces a coupling between destabilized proteins that are \waiting" to be degraded. In Aim 1, we will explore how such intracellular coupling can lead to clocks that are synchronized at multiple (intra- and intercellular) scales. In the next aim, we will explore the us of two intercellular coupling mechanisms to develop a new platform for synthetic biology. We have previously shown how quorum sensing and redox communication can be used to design a macroscopic (1cm) biosensor. In Aim 2, we will show how these coupling mechanisms can lead to an extremely stable toggle switch with switching transitions that are highly uniform at the single cell level. In the next aim, we will engineer light-sensitive circuits that produce complex spatiotemporal dynamics. Optogenetic circuits have recently been developed by several other groups and we plan to couple light-sensitive elements to our circuits to explore the light-guided propagation of signals throughout a spatially extended population of cells. In Aim 4, we will continue our work on a mammalian oscillator. Here, we will engineer a novel synthetic mammalian circuit that relies on a negative feedback mechanism that is mediated by a transrepressor that acts by inducing local chromatin remodeling upon binding the hybrid promoter. We will integrate our synthetic circuits into the cell genome in order to study how the molecular dynamics function within the chromosomal regulatory context. Finally, in Aim 5 we will develop bacterial minicells as a platform for delivering synthetic circuits to mammalian cells. To improve the functionality of minicells, we will construct and transfer to minicells an additional synthetic network that provides supplemental RNA polymerase, enabling independent gene expression long after minicell separation from parental bacteria. We will tailor our microuidic devices for housing and tracking minicells and will characterize circuit behavior using time-lapse uorescence microscopy. The successful completion of this project will lead to advances in our understanding of gene regulation and could ultimately result in the utilization of programmable logic in a gene-delivery context. 1
描述(由申请人提供):在拟议的项目中,我们将继续设计,构建和表征基因电路。我们将使用微流体工具在精确控制的环境条件下生长和观察单细胞。单细胞数据将为一组数学模型提供信息,这些模型将用于识别关键设计特征,然后将使用先前建立的分子生物学技术进行严格测试。这种多学科的方法将增加我们对基因调控的理解,并为合成生物学社区带来新的工具。 我们的第一个目标是探索“嵌套时钟”的相互作用。我们以前构建了一个强大的细胞内时钟和细胞间同步的时钟殖民地。对这些系统的表征表明,天然酶机制诱导了“等待”降解的不稳定蛋白质之间的偶联。在目标1中,我们将探索这种细胞内耦合如何导致在多个(细胞内和细胞间)尺度上同步的时钟。在接下来的研究中,我们将探索这两种细胞间偶联机制的应用,为合成生物学研究提供一个新的平台。我们以前已经展示了如何群体感应和氧化还原通信可以用来设计一个宏观(1厘米)的生物传感器。在目标2中,我们将展示这些耦合机制如何导致一个非常稳定的拨动开关,其开关转换在单电池水平上高度均匀。在下一个目标中,我们将设计产生复杂时空动态的光敏电路。光遗传电路最近已经由其他几个小组开发,我们计划将光敏元件耦合到我们的电路中,以探索信号在空间扩展的细胞群中的光导传播。在目标4中,我们将继续研究哺乳动物振荡器。在这里,我们将设计一种新的合成哺乳动物电路,依赖于负反馈机制,这是介导的反式阻遏物,通过诱导局部染色质重塑后结合的混合启动子。我们将把我们的合成电路整合到细胞基因组中,以研究分子动力学如何在染色体调控环境中发挥作用。最后,在目标5中,我们将开发细菌微细胞作为向哺乳动物细胞提供合成电路的平台。为了改善微细胞的功能,我们将构建并转移到微细胞的额外的合成网络,提供补充的RNA聚合酶,使独立的基因表达后很长一段时间的微细胞从亲本细菌分离。我们将定制我们的微电路装置,用于容纳和跟踪微细胞,并将使用延时荧光显微镜表征电路行为。该项目的成功完成将导致我们对基因调控的理解取得进展,并最终导致在基因传递环境中利用可编程逻辑。1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFF M HASTY其他文献
JEFF M HASTY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFF M HASTY', 18)}}的其他基金
Development of Engineered Native Bacteria as a Tool for Functional Manipulation of the Gut Microbiome
开发工程原生细菌作为肠道微生物组功能操纵的工具
- 批准号:
10737475 - 财政年份:2023
- 资助金额:
$ 47.77万 - 项目类别:
Reprogramming cell-fate decisions through predictive modeling and synthetic biology
通过预测模型和合成生物学重新编程细胞命运决定
- 批准号:
10784558 - 财政年份:2022
- 资助金额:
$ 47.77万 - 项目类别:
Reprogramming cell-fate decisions through predictive modeling and synthetic biology
通过预测模型和合成生物学重新编程细胞命运决定
- 批准号:
10344041 - 财政年份:2022
- 资助金额:
$ 47.77万 - 项目类别:
Reprogramming cell-fate decisions through predictive modeling and synthetic biology
通过预测模型和合成生物学重新编程细胞命运决定
- 批准号:
10706965 - 财政年份:2022
- 资助金额:
$ 47.77万 - 项目类别:
Reprogramming cell-fate decisions through predictive modeling and synthetic biology
通过预测模型和合成生物学重新编程细胞命运决定
- 批准号:
10908026 - 财政年份:2022
- 资助金额:
$ 47.77万 - 项目类别:
Design and characterization of bacterial population dynamics in solid tumor models
实体瘤模型中细菌种群动态的设计和表征
- 批准号:
10212134 - 财政年份:2021
- 资助金额:
$ 47.77万 - 项目类别:
Design and characterization of bacterial population dynamics in solid tumor models
实体瘤模型中细菌种群动态的设计和表征
- 批准号:
10456087 - 财政年份:2021
- 资助金额:
$ 47.77万 - 项目类别:
A microbiome-informed platform for the development and testing of bacterial therapies for colorectal cancer
用于开发和测试结直肠癌细菌疗法的微生物组信息平台
- 批准号:
10166805 - 财政年份:2020
- 资助金额:
$ 47.77万 - 项目类别:
A microbiome-informed platform for the development and testing of bacterial therapies for colorectal cancer
用于开发和测试结直肠癌细菌疗法的微生物组信息平台
- 批准号:
9974305 - 财政年份:2020
- 资助金额:
$ 47.77万 - 项目类别:
A microbiome-informed platform for the development and testing of bacterial therapies for colorectal cancer
用于开发和测试结直肠癌细菌疗法的微生物组信息平台
- 批准号:
10397153 - 财政年份:2020
- 资助金额:
$ 47.77万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 47.77万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 47.77万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 47.77万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 47.77万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 47.77万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 47.77万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 47.77万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 47.77万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 47.77万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 47.77万 - 项目类别:
Research Grant