Microfluidics-based Selections for the Optimization of Red Flourescent Proteins
基于微流体的红色荧光蛋白优化选择
基本信息
- 批准号:8101068
- 负责人:
- 金额:$ 32.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:Amino Acid SubstitutionBenchmarkingBiologyCell physiologyCellsCellular biologyChargeDevelopmentDiffuseDiseaseDisease ProgressionEngineeringEnvironmentExhibitsExposure toExtinction (Psychology)FluorescenceFutureGene ExpressionGoalsHydrogen BondingImageImaging DeviceIndividualIodidesIonsLasersLeadLibrariesLifeLightMammalian CellMeasurementMicrofluidicsMolecularMolecular ProbesMonitorMovementMutagenesisMutationOutputOxygenPhasePhotobleachingPhotonsPhysiologic pulsePositioning AttributeProbabilityPropertyProtein EngineeringProteinsProtonsPublic HealthRelative (related person)RelaxationResearchResearch PersonnelResolutionSchemeSignal TransductionSignaling MoleculeSorting - Cell MovementSurfaceTimeTriplet Multiple BirthWorkbasecellular imagingchromophorecis trans isomerizationcombinatorialdesigndirected evolutionenzyme activityfluorophorehigh throughput screeningimprovedinsightmembernovelquantumred fluorescent proteinsingle moleculetwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): The broad goal of this project is to develop fluorescent proteins with an 80-fold improvement in signal output (e.g. number of photons emitted before photobleaching). Over the last 10-15 years, fluorescent proteins have provided critical insights into the fundamental workings of the cell as they enable researchers to visualize protein movements, enzyme activities, gene expression, and to quantify important signaling molecules in real time in living cells. As a result, fluorescent proteins have truly revolutionized cell biology, shedding light on the basic biology of cellular function, while helping to elucidate what goes wrong in disease states. Substantial improvements in the signal output of fluorescent proteins are required for the next level: visualizing and monitoring of single molecules within individual living cells. Although there has been a concerted effort in the protein engineering field to enhance fluorescent protein properties, recent improvements have been incremental at best. We hypothesize that an 80-fold improvement in signal output can be obtained by explicitly engineering both the chromophore pocket and surface environment of fluorescent proteins. We propose to generate targeted libraries of these proteins, express the libraries in mammalian cells, and screen proteins for increased brightness, increased photostability, and decreased conversion to "dark states" using a novel microfluidic cell sorter that we recently implemented. Moreover we will conduct multi-parameter screens in order to identify mutations that enhance multiple photophysical properties (for example brightness and photostability) and combine synergistically to improve signal output substantially. This information is crucial as protein engineering efforts based on a single selection scheme typically optimize one property at the expense of another, leading to only modest gains in signal output. Our goal is to connect sequence diversity to functional diversity in order to provide insight into the molecular control of photophysical properties in the fluorescent proteins. This information will not only be used in future protein design efforts, but will help us define the maximum signal output obtainable from fluorescent proteins. The proposed research has 3 Specific Aims: (1) To increase signal 20-fold with multi-phase screen that probes dark-state relaxation rate; (2) To increase photostability of red fluorescent proteins by at least 7-fold with screen that probes photobleaching; (3) To identify combinations of mutations that yield synergistic effects on photophysical properties. This will enable us to combine enhancements identified in aim 1 and 2, with improvements in brightness to yield an 80- fold increase in signal output. We have chosen to focus on red fluorescent proteins because these have the greatest potential for impacting single molecule cellular imaging. The development of new fluorescent proteins with substantial increases in signal output will dramatically expand our ability to visualize and probe the inner workings of living cells. These imaging tools will impact public health by providing valuable insight into basic biology and mechanisms of disease progression.
描述(由申请人提供):该项目的主要目标是开发信号输出(例如,光漂白前发射的光子数)提高80倍的荧光蛋白。在过去的10-15年里,荧光蛋白为细胞的基本工作提供了重要的见解,因为它们使研究人员能够可视化蛋白质运动,酶活性,基因表达,并在活细胞中真实的时间内量化重要的信号分子。因此,荧光蛋白真正彻底改变了细胞生物学,揭示了细胞功能的基本生物学,同时有助于阐明疾病状态中的问题。荧光蛋白信号输出的实质性改进需要下一个水平:可视化和监测单个活细胞内的单个分子。尽管在蛋白质工程领域已经有了一致的努力来增强荧光蛋白的特性,但最近的改进充其量只是渐进的。我们假设,一个80倍的信号输出的改善,可以通过明确工程的发色团口袋和表面环境的荧光蛋白。我们建议生成这些蛋白质的靶向文库,在哺乳动物细胞中表达文库,并使用我们最近实施的新型微流体细胞分选仪筛选蛋白质以增加亮度,增加光稳定性和减少向“暗态”的转化。此外,我们将进行多参数筛选,以鉴定增强多种生物物理性质(例如亮度和光稳定性)并协同联合收割机以显著改善信号输出的突变。这一信息是至关重要的,因为基于单一选择方案的蛋白质工程努力通常以牺牲另一个特性为代价来优化一个特性,从而仅导致信号输出的适度增益。我们的目标是将序列多样性与功能多样性联系起来,以便深入了解荧光蛋白中生物物理特性的分子控制。这些信息不仅将用于未来的蛋白质设计工作,而且将帮助我们定义从荧光蛋白可获得的最大信号输出。拟议的研究有3个具体目标:(1)用探测暗态弛豫速率的多相筛选将信号增加20倍;(2)用探测光漂白的筛选将红色荧光蛋白的光稳定性增加至少7倍;(3)鉴定对生物物理性质产生协同效应的突变组合。这将使我们能够将目标1和目标2中确定的增强功能与亮度的改进结合起来,使信号输出增加80倍。联合收割机。我们选择专注于红色荧光蛋白,因为它们具有影响单分子细胞成像的最大潜力。新的荧光蛋白的发展与信号输出的大幅增加将大大扩大我们的能力,可视化和探测活细胞的内部运作。这些成像工具将通过提供对疾病进展的基础生物学和机制的有价值的见解来影响公共卫生。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pressure-induced changes in the fluorescence behavior of red fluorescent proteins.
压力诱导的红色荧光蛋白荧光行为变化。
- DOI:10.1021/jp306093h
- 发表时间:2012-08-30
- 期刊:
- 影响因子:3.3
- 作者:Pozzi, Eric A.;Schwall, Linda R.;Jimenez, Ralph;Weber, J. Mathias
- 通讯作者:Weber, J. Mathias
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RALPH JIMENEZ其他文献
RALPH JIMENEZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RALPH JIMENEZ', 18)}}的其他基金
Microfluidics-based Selections for the Optimization of Red Flourescent Proteins
基于微流体的红色荧光蛋白优化选择
- 批准号:
7647100 - 财政年份:2008
- 资助金额:
$ 32.1万 - 项目类别:
Microfluidics-based Selections for the Optimization of Red Flourescent Proteins
基于微流体的红色荧光蛋白优化选择
- 批准号:
7431374 - 财政年份:2008
- 资助金额:
$ 32.1万 - 项目类别:
Microfluidics-based Selections for the Optimization of Red Flourescent Proteins
基于微流体的红色荧光蛋白优化选择
- 批准号:
7880099 - 财政年份:2008
- 资助金额:
$ 32.1万 - 项目类别:
相似国自然基金
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
- 批准号:
10100319 - 财政年份:2024
- 资助金额:
$ 32.1万 - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 32.1万 - 项目类别:
Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 32.1万 - 项目类别:
Standard Grant
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
$ 32.1万 - 项目类别:
Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
- 批准号:
2892813 - 财政年份:2023
- 资助金额:
$ 32.1万 - 项目类别:
Studentship
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233969 - 财政年份:2023
- 资助金额:
$ 32.1万 - 项目类别:
Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
- 批准号:
2311733 - 财政年份:2023
- 资助金额:
$ 32.1万 - 项目类别:
Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
- 批准号:
10662975 - 财政年份:2023
- 资助金额:
$ 32.1万 - 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233968 - 财政年份:2023
- 资助金额:
$ 32.1万 - 项目类别:
Continuing Grant