Development and Evaluation of Prediction Models for Breast Cancer Prognosis

乳腺癌预后预测模型的开发和评估

基本信息

  • 批准号:
    9320086
  • 负责人:
  • 金额:
    $ 0.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-04-10 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): One in eight US women will be diagnosed with breast cancer during her lifetime, making it the second leading cause of cancer deaths among US women. Currently, there are about 3.1 million women living with breast cancer in the US. Despite the overall favorable prognosis for breast cancer, the risk of recurrence persists for the remainder of the patient's lifetime, with a 15-year recurrence rate greater than 40%. Accurate prediction of breast cancer outcomes, therefore, is essential for developing personalized treatment, which would maximize treatment efficacy, spare patients unnecessary treatment, and identify women at high risk of recurrence for preventive intervention. However, existing prediction tools and models for breast cancer prognosis, including Adjuvant! online, the most widely used prediction tool in the US, include only clinicopathological prognostic factors (e.g., age, tumor grade and size, and lymph node, hormone receptor , and estrogen receptor status), without considering well-recognized lifestyle predictors such as obesity, weight gain, and post-diagnosis physical activity. In addition, no prediction tool or models have been developed and validated among Asian women with breast cancer. In the proposed study, we will utilize the resources of the Shanghai Breast Cancer Survival Study, a well characterized, population-based prospective cohort study of 5,042 breast cancer survivors with detailed information on lifestyle factors, to build prediction models that incorporate both clinicopathological and lifestye factors. Separate prediction models will be built first for 5-and 10-year overall survival, breast cancer-specific survival, and disease-free survival based on the clinicopathological factors that are included in Adjuvant! online, and then expanded to incorporate lifestyle factors. Models will be validated and evaluated for predictive ability, then compared with existing breast cancer prediction tools/models. The proposed study is cost-efficient, feasible, and will fill gaps in breat cancer outcomes prediction research. While the prevalence of lifestyle factors may differ between the US and China, we have specifically demonstrated this in our investigations of lifestyle factors and breast cancer outcomes in several large-scale studies that physical activity, pre-diagnosis BMI, and soy food intake, are associated with breast cancer outcomes, regardless of country or race/ethnicity. Therefore, the knowledge gained from the proposed study should be generalizable for building prediction models for breast cancer patients of other racial and ethnic groups.
描述(由申请人提供):八分之一的美国女性在其一生中会被诊断出患有乳腺癌,这使其成为美国女性癌症死亡的第二大原因。目前,美国约有 310 万女性患有乳腺癌。尽管乳腺癌总体预后良好,但复发风险在患者余生中持续存在,15 年复发率超过 40%。因此,准确预测乳腺癌的结果对于制定个性化治疗至关重要,这将最大限度地提高治疗效果,避免患者不必要的治疗,并识别复发高风险的女性进行预防性干预。然而,现有的乳腺癌预后预测工具和模型,包括佐剂!在线预测工具是美国使用最广泛的预测工具,仅包括临床病理预后因素(例如年龄、肿瘤分级和大小、淋巴结、激素受体和雌激素受体状态),而不考虑公认的生活方式预测因素,例如肥胖、体重增加和诊断后体力活动。此外,尚未在患有乳腺癌的亚洲女性中开发和验证预测工具或模型。在拟议的研究中,我们将利用上海乳腺癌生存研究的资源,这是一项特征明确、基于人群的前瞻性队列研究,涉及 5,042 名乳腺癌幸存者,并提供生活方式因素的详细信息,建立结合临床病理和生活方式因素的预测模型。首先将根据 Adjuvant! 中包含的临床病理因素,针对 5 年和 10 年总体生存率、乳腺癌特异性生存率和无病生存率建立单独的预测模型!在线,然后扩展到纳入生活方式因素。将验证和评估模型的预测能力,然后与现有的乳腺癌预测工具/模型进行比较。拟议的研究具有成本效益、可行,并将填补乳腺癌结果预测研究的空白。虽然美国和中国之间生活方式因素的患病率可能有所不同,但我们在几项大规模研究中对生活方式因素和乳腺癌结果的调查中明确证明了这一点,即体力活动、 诊断前体重指数和大豆食物摄入量与乳腺癌结果相关,无论国家或种族/民族如何。因此,从拟议研究中获得的知识应该可以推广用于为其他种族和族裔群体的乳腺癌患者建立预测模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fei Ye其他文献

Fei Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fei Ye', 18)}}的其他基金

Development and Evaluation of Prediction Models for Breast Cancer Prognosis
乳腺癌预后预测模型的开发和评估
  • 批准号:
    8836985
  • 财政年份:
    2014
  • 资助金额:
    $ 0.28万
  • 项目类别:
Development and Evaluation of Prediction Models for Breast Cancer Prognosis
乳腺癌预后预测模型的开发和评估
  • 批准号:
    8702691
  • 财政年份:
    2014
  • 资助金额:
    $ 0.28万
  • 项目类别:

相似国自然基金

基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
  • 批准号:
    41340011
  • 批准年份:
    2013
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Use of deep learning and development of statistical prediction result evaluation methods for the acceleration of personalized medicine
利用深度学习和开发统计预测结果评估方法加速个性化医疗
  • 批准号:
    23K11014
  • 财政年份:
    2023
  • 资助金额:
    $ 0.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a Prediction and Evaluation Method for Load Initiation Timing and Load Magnitude in Femoral Shaft Fractures Using Finite Element Analysis
利用有限元分析开发股骨干骨折载荷启动时间和载荷大小的预测和评估方法
  • 批准号:
    23K08691
  • 财政年份:
    2023
  • 资助金额:
    $ 0.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and evaluation of prediction model for multivariate survival data
多变量生存数据预测模型的开发和评估
  • 批准号:
    21K17712
  • 财政年份:
    2021
  • 资助金额:
    $ 0.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantitative evaluation and prediction technology development for occurrence conditions of vehicles-stranding during heavy snowfall
大雪滞留车辆发生状况定量评估与预测技术开发
  • 批准号:
    20K05043
  • 财政年份:
    2020
  • 资助金额:
    $ 0.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of revised evaluation sheets of risk prediction ability based on time pressure theory
基于时间压力理论的风险预测能力修订评价表的开发
  • 批准号:
    20K20249
  • 财政年份:
    2020
  • 资助金额:
    $ 0.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New Development of Strong Motion Evaluation and Realtime Prediction by Deep Learning
深度学习强运动评估与实时预测新进展
  • 批准号:
    19K22002
  • 财政年份:
    2019
  • 资助金额:
    $ 0.28万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
The development of genome-wide polygenic risk scores for the prediction of cancer risk, and the evaluation of their ability to discriminate cancer risk.
开发用于预测癌症风险的全基因组多基因风险评分,并评估其区分癌症风险的能力。
  • 批准号:
    19K10655
  • 财政年份:
    2019
  • 资助金额:
    $ 0.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and Evaluation of a New Model for Radiative Transfer Prediction
辐射传输预测新模型的开发和评估
  • 批准号:
    529092-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 0.28万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Development of methodology for evaluation supply and demand in community healthcare: Construction of prediction model using NDB
社区医疗供需评估方法的开发:使用 NDB 构建预测模型
  • 批准号:
    18K17308
  • 财政年份:
    2018
  • 资助金额:
    $ 0.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Prediction of lipid metabolism regulation in fresh produces by lipidomics leading to the development for freshness evaluation methodology
通过脂质组学预测新鲜农产品中的脂质代谢调节,从而开发新鲜度评估方法
  • 批准号:
    16H02581
  • 财政年份:
    2016
  • 资助金额:
    $ 0.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了