The Yeast Centrosome - Structure Assembly & Function
酵母中心体 - 结构组装
基本信息
- 批准号:8668219
- 负责人:
- 金额:$ 146.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesArchitectureCell CycleCellsCentrosomeChromosome SegregationChromosome abnormalityChromosomesCollaborationsColoradoComplexDataDefectDevelopmental Delay DisordersDiseaseEnvironmentEventFluorescence Resonance Energy TransferFutureGenomic InstabilityGoalsGrantHomeostasisHumanIn SituIn VitroIndividualKnowledgeLeadLearningMalignant NeoplasmsMapsMeasuresMechanicsMicrotubule-Organizing CenterMicrotubulesMitosisMitotic ChromosomeMitotic spindleModelingMolecularOrganellesPrincipal InvestigatorProgram Research Project GrantsPropertyProteinsRecruitment ActivityRegulationResearchResearch PersonnelResourcesRoentgen RaysRuptureSaccharomyces cerevisiaeSiteStructural BiologistStructural ModelsStructureTestingTubulinVertebratesWashingtonWisconsinWorkYeastsbiophysical techniqueschromosome movementelectron tomographyflexibilityin vivointerdisciplinary approachinterestmetaplastic cell transformationmutantnervous system disorderpublic health relevancespindle pole body
项目摘要
DESCRIPTION (provided by applicant): Grant (PPG) will create a collaborative environment to coordinate research on centrosome structure, mechanics, homeostasis and function. Six investigators will study the Saccharomyces cerevisiae centrosome as a model microtubule-organizing center (MTOC) analogous to the vertebrate centrosome, which shares key homologous components and regulators. A centrosome/SPB is the primary microtubule-organizing center of the cell and is critical for bipolar spindle assembly and accurate mitotic chromosome segregation. Centrosome duplication is an essential cell cycle event being the first step in spindle formation; defects in duplication or function lead to genomic instability and cellular transformation. Accurate chromosome segregation depends on both proper regulation of spindle assembly and precise connections between spindle microtubules and chromosomes. The PPG is focused specifically on 10 core SPB components that form the lattice and microtubule nucleation sites including the y-tubulin complexes. These proteins act similarly to the pericentriolar material of vertebrate centrosomes, which is crucial for microtubule nucleation and organization, but poorly understood. We propose to elucidate the molecular architecture of the yeast centrosome and to probe the mechanisms, by which it is assembled, maintained and functions in nucleating microtubules. A multidisciplinary approach examining different aspects of the problem will be coordinated to include: determining how the structure and mechanics of the y-tubulin complex and associated proteins collaborate to accomplish microtubule nucleation; investigating how core SPB components are assembled and how they recruit y-tubulin complexes; identifying the critical intrinsic and extrinsic factors for maintaining homeostasis of this dynamic organelle; solving the atomic structure of SPB components and complexes, and working toward an integrated structural model of the entire SPB core. This PPG builds on existing collaborations between David Agard (UCSF) and Trisha Davis (U. Washington) on g- tubulin complexes, and Ivan Rayment (U. Wisconsin) and Mark Winey (U. Colorado) on core SPB components. These four groups will work together on the 10 proteins. Their projects will profit from structural modeling of the SPB (Andrej Sali, UCSF) and quantifying the mechanical properties of the SPB using biophysical techniques (Chip Asbury, U. Washington). There is tremendous potential to produce an unprecedented molecular description of a centrosome revealing mechanisms of assembly, stability and function. This work will serve as a model for future analysis of the much more complex human centrosome.
描述(由申请人提供):格兰特(PPG)将创建一个协作环境,以协调中心体结构,力学,稳态和功能的研究。六名研究人员将研究酿酒酵母中心体作为一个模型微管组织中心(MTOC)类似于脊椎动物中心体,共享关键的同源组件和监管机构。中心体/SPB是细胞的主要微管组织中心,并且对于双极纺锤体组装和精确的有丝分裂染色体分离至关重要。中心体复制是细胞周期中重要的事件,是纺锤体形成的第一步;复制或功能缺陷导致基因组不稳定和细胞转化。准确的染色体分离依赖于纺锤体组装的正确调节和纺锤体微管与染色体之间的精确连接。PPG特别关注形成晶格和微管成核位点(包括y-微管蛋白复合物)的10种核心SPB组分。这些蛋白的作用类似于脊椎动物中心体的中心粒周围物质,这对微管成核和组织至关重要,但了解甚少。我们拟阐明酵母中心体的分子结构,并探讨其组装、维持和在成核微管中发挥作用的机制。一个多学科的方法检查不同方面的问题将协调,包括:确定如何结构和力学的y-微管蛋白复合物和相关蛋白质合作,以完成微管成核;调查如何核心SPB组件组装,以及他们如何招募y-微管蛋白复合物;确定关键的内在和外在因素,维持动态细胞器的稳态;解决SPB组分和复合物的原子结构,并致力于整个SPB核心的集成结构模型。这个PPG建立在大卫阿加德(加州大学旧金山分校)和特丽莎戴维斯(美国)之间的现有合作。华盛顿)对g-微管蛋白复合物的研究,和Ivan Rayment(U.威斯康星州)和马克维尼(美国。科罗拉多)的核心SPB组件。这四个小组将共同研究这10种蛋白质。他们的项目将受益于SPB的结构建模(Andrej Sali,UCSF)和使用生物物理技术量化SPB的机械性能(Chip阿斯伯里,U。华盛顿)。有巨大的潜力产生一个前所未有的中心体分子描述揭示组装,稳定性和功能的机制。这项工作将作为未来分析更复杂的人类中心体的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK WINEY其他文献
MARK WINEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK WINEY', 18)}}的其他基金
MIPS (Microtubule Inner Proteins) function in cilia and basal bodies
MIPS(微管内部蛋白)在纤毛和基底体中发挥作用
- 批准号:
10655224 - 财政年份:2018
- 资助金额:
$ 146.06万 - 项目类别:
The Yeast Centrosome - Structure Assembly & Function
酵母中心体 - 结构组装
- 批准号:
9486545 - 财政年份:2014
- 资助金额:
$ 146.06万 - 项目类别:
The Yeast Centrosome - Structure Assembly & Function
酵母中心体 - 结构组装
- 批准号:
9073389 - 财政年份:2014
- 资助金额:
$ 146.06万 - 项目类别:
Molecular Interactions and Dynamics of the Yeast SPB Core Architecture
酵母 SPB 核心架构的分子相互作用和动力学
- 批准号:
8668223 - 财政年份:2014
- 资助金额:
$ 146.06万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 146.06万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 146.06万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 146.06万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 146.06万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 146.06万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 146.06万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 146.06万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 146.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 146.06万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 146.06万 - 项目类别:














{{item.name}}会员




