Non-Invasive Biological Monitoring of Pesticides

农药的非侵入性生物监测

基本信息

项目摘要

DESCRIPTION (provided by applicant): In articulating a vision for Toxicity Testing in the 21st Century, the National Research Council (NRC) noted that exposure science will play a critical role. In this context, biomonitoring is a key component that quantitatively associates an internal dose with a measurable effect. It has also been suggested that epidemiology studies which accurately assess chemical exposures along with biological effects will have the most meaningful interpretation and thus maximal impact. A major impediment for conducting biomonitoring within epidemiology studies is the lack of rapid, field deployable, quantitative technologies that measure chemical exposures using minimally invasive biological fluids, such as saliva. Our recently completed research resulted in the development of pesticide sensor platforms, an in vivo animal model system for rapid characterization of saliva pesticide uptake and clearance, and a dosimetry model to predict systemic dose based upon a 'spot' saliva measurement. Recently, the utility of the sensor was confirmed by measuring a target analyte in saliva from pesticide manufacturing plant workers. This project has been highly successful and can be utilized as a framework for evaluating a broader range of important chemicals. Since human exposure is rarely to single agents but rather to complex mixtures, there is a need to develop biomonitoring strategies capable of measuring multiple analytes. This is particularly true in agriculture where multiple pesticides are routinely utilized on crops. Clearly there is a need t extend the strategy to other important pesticides; however, a major limitation is the inability to priori identify which chemicals are readily cleared in saliva, hampering our ability to easily develop a multiplex screening platform. To address this challenge, it is hypothesized that chemical uptake and clearance in saliva can readily be predicted for a broad range of chemicals based upon limited in vitro experiments which are integrated into a pharmacokinetic model. To test this hypothesis this continuation project will exploit the previously developed in vivo rat model for salivary gland uptake and clearance and will develop additional in vitro cell and sub-cellular based approaches for a broad range of pesticides having differing physical and chemical characteristics as well as clearance mechanisms. Once validated, this approach can guide sensor platform development since model simulations will provide critical information on detection limits and clearance rates.
描述(由申请人提供):在阐述21世纪毒性测试的愿景时,国家研究委员会(NRC)指出,暴露科学将发挥关键作用。在这种情况下,生物监测是将内部剂量与可测量的影响定量联系起来的关键组成部分。还有人提出,准确评估化学暴露以及生物影响的流行病学研究将具有最有意义的解释,从而产生最大的影响。在流行病学研究中进行生物监测的一个主要障碍是缺乏使用唾液等微创生物流体测量化学暴露的快速、现场可部署的定量技术。我们最近完成的研究导致了农药传感器平台的开发,一个用于快速表征唾液中农药摄取和清除的体内动物模型系统,以及一个基于唾液测量的预测全身剂量的剂量学模型。最近,通过测量农药制造厂工人唾液中的目标分析物,证实了该传感器的用途。该项目非常成功,可作为评估更广泛的重要化学品的框架。由于人类很少接触单一试剂,而是接触复杂的混合物,因此需要开发能够测量多个分析物的生物监测策略。在农作物上经常使用多种杀虫剂的农业中尤其如此。显然,有必要将这一战略扩展到其他重要的杀虫剂;然而,一个主要的限制是无法事先确定哪些化学物质在唾液中很容易清除,这阻碍了我们轻松开发多重筛查平台的能力。为了应对这一挑战,假设可以很容易地预测一系列化学物质在唾液中的化学吸收和清除,这是基于有限的体外实验,并将其整合到药代动力学模型中。为了验证这一假设,这个继续项目将利用之前开发的唾液腺摄取和清除的在体大鼠模型,并将开发其他基于体外细胞和亚细胞的方法,用于具有不同物理和化学特性以及清除机制的广泛的杀虫剂。一旦得到验证,这种方法可以指导传感器平台的开发,因为模型模拟将提供有关检测极限和清除率的关键信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHARLES TIMCHALK其他文献

CHARLES TIMCHALK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHARLES TIMCHALK', 18)}}的其他基金

Non-Invasive Biomonitoring of Pesticides
农药的非侵入式生物监测
  • 批准号:
    7472362
  • 财政年份:
    2006
  • 资助金额:
    $ 56.85万
  • 项目类别:
Development of Selective Nanoporous Sorbents for Radionuclide Decorporation
用于放射性核素修饰的选择性纳米孔吸附剂的开发
  • 批准号:
    7585451
  • 财政年份:
    2006
  • 资助金额:
    $ 56.85万
  • 项目类别:
Portable Analyzer for On-site Monitoring of Worker Exposure to Toxic Metals
用于现场监测工人接触有毒金属的便携式分析仪
  • 批准号:
    7282746
  • 财政年份:
    2006
  • 资助金额:
    $ 56.85万
  • 项目类别:
Non-Invasive Biomonitoring of Pesticides
农药的非侵入式生物监测
  • 批准号:
    7633181
  • 财政年份:
    2006
  • 资助金额:
    $ 56.85万
  • 项目类别:
Development of Selective Nanoporous Sorbents for Radionuclide Decorporation
用于放射性核素修饰的选择性纳米孔吸附剂的开发
  • 批准号:
    7267893
  • 财政年份:
    2006
  • 资助金额:
    $ 56.85万
  • 项目类别:
Non-Invasive Biomonitoring of Pesticides
农药的非侵入式生物监测
  • 批准号:
    7282512
  • 财政年份:
    2006
  • 资助金额:
    $ 56.85万
  • 项目类别:
Non-Invasive Biomonitoring of Pesticides
农药的非侵入式生物监测
  • 批准号:
    7141457
  • 财政年份:
    2006
  • 资助金额:
    $ 56.85万
  • 项目类别:
INNOVATIVE BIOMONITORING FOR LEAD IN SALIVA
唾液中铅的创新生物监测
  • 批准号:
    7069121
  • 财政年份:
    2003
  • 资助金额:
    $ 56.85万
  • 项目类别:
INNOVATIVE BIOMONITORING FOR LEAD IN SALIVA
唾液中铅的创新生物监测
  • 批准号:
    6895936
  • 财政年份:
    2003
  • 资助金额:
    $ 56.85万
  • 项目类别:
INNOVATIVE BIOMONITORING FOR LEAD IN SALIVA
唾液中铅的创新生物监测
  • 批准号:
    6573258
  • 财政年份:
    2003
  • 资助金额:
    $ 56.85万
  • 项目类别:

相似海外基金

Development of non-invasive imaging methods of Biological flow and concentration field for in vivo physiological immune system interference
体内生理免疫系统干扰的生物流场和浓度场无创成像方法的发展
  • 批准号:
    22H01394
  • 财政年份:
    2022
  • 资助金额:
    $ 56.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
FY20 SBIR PHASE I TOPIC #400 - AMBAY RADI-SENSE: NON-INVASIVE, NOVEL TEST TO MONITOR BIOLOGICAL RESPONSE TO RADIOTHERAPY
2020 财年 SBIR 第一阶段主题
  • 批准号:
    10409514
  • 财政年份:
    2020
  • 资助金额:
    $ 56.85万
  • 项目类别:
FY20 SBIR PHASE I TOPIC #400 - AMBAY RADI-SENSE: NON-INVASIVE, NOVEL TEST TO MONITOR BIOLOGICAL RESPONSE TO RADIOTHERAPY
2020 财年 SBIR 第一阶段主题
  • 批准号:
    10270067
  • 财政年份:
    2020
  • 资助金额:
    $ 56.85万
  • 项目类别:
Multimodality optical coherence tomography for non-invasive imaging of the structure, function and metabolism of biological tissue
多模态光学相干断层扫描对生物组织的结构、功能和代谢进行无创成像
  • 批准号:
    312037-2013
  • 财政年份:
    2019
  • 资助金额:
    $ 56.85万
  • 项目类别:
    Discovery Grants Program - Individual
Development of molecularly imprinted ionic liquid gel sensor for the non-invasive monitoring of biological composition
开发用于生物成分无创监测的分子印迹离子液体凝胶传感器
  • 批准号:
    18K14891
  • 财政年份:
    2018
  • 资助金额:
    $ 56.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Multimodality optical coherence tomography for non-invasive imaging of the structure, function and metabolism of biological tissue
多模态光学相干断层扫描对生物组织的结构、功能和代谢进行无创成像
  • 批准号:
    312037-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 56.85万
  • 项目类别:
    Discovery Grants Program - Individual
Non-contact and non-invasive manipulation of biological functionalities using all-optical method
使用全光学方法对生物功能进行非接触和非侵入性操控
  • 批准号:
    17H06228
  • 财政年份:
    2017
  • 资助金额:
    $ 56.85万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
"Teramometry" -A new non-invasive high-sensitivity biological thermal imaging technique
“测温法”——一种新型非侵入性高灵敏度生物热成像技术
  • 批准号:
    479401-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 56.85万
  • 项目类别:
    Strategic Projects - Group
Multimodality optical coherence tomography for non-invasive imaging of the structure, function and metabolism of biological tissue
多模态光学相干断层扫描对生物组织的结构、功能和代谢进行无创成像
  • 批准号:
    312037-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 56.85万
  • 项目类别:
    Discovery Grants Program - Individual
Non-Invasive, Highly Specific Detection of Oxytocin in Biological Fluids
非侵入性、高特异性检测生物体液中的催产素
  • 批准号:
    9131542
  • 财政年份:
    2016
  • 资助金额:
    $ 56.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了