Mining health data for drug safety profiles
挖掘健康数据以获取药物安全概况
基本信息
- 批准号:8728954
- 负责人:
- 金额:$ 57.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse drug effectAdverse effectsAdverse eventAmbulatory CareBehavior TherapyBlindedCatalogingCatalogsCessation of lifeCharacteristicsClinicalClinical TrialsCodeComorbidityComputerized Medical RecordCost SavingsDataData ReportingData SetData SourcesDetectionDevelopmentDimensionsDiseaseDisease AssociationDrug CombinationsDrug usageElectronic Health RecordEventGraphGrowthHealthHealthcareIndividualInpatientsKnowledgeLabelLength of StayLifeMedical ElectronicsMethodsMiningMonitorMorbidity - disease rateNatural Language ProcessingOntologyOutpatientsPatientsPharmaceutical PreparationsPhysiciansPopulation ControlPositioning AttributeProxyRattusReportingResourcesSafetySideSignal TransductionSourceSurveillance MethodsSystemTarget PopulationsTestingTextTimeUnited StatesValidationWorkaging populationbasebiomedical ontologyblindcostdata miningdrug efficacyimprovedinsightknowledge basemortalitymultiple drug usenovelpatient safetypublic health relevancesafety testingsystematic reviewtooltrend
项目摘要
DESCRIPTION (provided by applicant): Clinical trials, which test the safety and efficacy of drugs in a controlled population, cannot identify all safety issues associated with drugs because the size and characteristics of the target population, duration of use, the concomitant disease conditions and therapies differ markedly in actual usage conditions. On the outpatient side, medication related morbidity and mortality in the United States is estimated to result in 100,000 deaths and $177 billion in cost annually. On the inpatient side, it is estimated that roughly 30% of hospital stays have an adverse drug event. Current one-drug-at-a-time methods for surveillance are woefully inadequate because no one monitors the "real life" situation of patients getting over 3 concomitant drugs in the context of multiple co-morbidities. In preliminary work, we have built an annotation and analysis pipeline that uses the knowledge-graph formed by public biomedical ontologies for the purpose data-mining unstructured clinical notes. We have demonstrated that we can reproduce drug safety signals from the clinical notes on average 2.7 years ahead of the issue of a drug safety alert. Using this pipeline, we propose: 1) to identfy and prioritize multi-drug combinations that are worth testing; 2) to develop methods for discovering adverse event profiles of multi- drug combinations; and 3) to create an EHR derived catalogue of potential adverse events of multi-drug combinations. We will use hierarchies provided by existing public ontologies for drugs, diseases and side- effects to improve signal detection by aggregation, to reduce multiple hypothesis testing and to make a search for multi-drug side effects computationally tractable.
描述(由申请人提供):在受控人群中测试药物安全性和有效性的临床试验,不能确定与药物有关的所有安全问题,因为目标人群的规模和特征、使用时间、伴随的疾病情况和治疗方法在实际使用条件下明显不同。在门诊方面,据估计,在美国,与药物相关的发病率和死亡率每年导致10万人死亡,成本为1770亿美元。在住院方面,据估计,大约30%的住院患者有不良药物事件。目前一次监测一种药物的方法严重不足,因为没有人监测在多种并存情况下服用3种以上伴随药物的患者的“真实生活”情况。在前期工作中,我们建立了一个注释和分析管道,使用公共生物医学本体形成的知识图来挖掘非结构化临床笔记。我们已经证明,我们可以在发出药物安全警报之前平均2.7年从临床笔记中重现药物安全信号。利用这一渠道,我们建议:1)识别和优先排序值得试验的多药组合;2)开发发现多药组合不良事件概况的方法;3)创建多药组合潜在不良事件的EHR衍生目录。我们将使用现有的药物、疾病和副作用公共本体提供的层次结构来改进聚合信号检测,减少多重假设检验,并使搜索多药物副作用变得易于计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NIGAM H SHAH其他文献
NIGAM H SHAH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NIGAM H SHAH', 18)}}的其他基金
Applying statistical learning tools to personalize cardiovascular treatment
应用统计学习工具进行个性化心血管治疗
- 批准号:
9900852 - 财政年份:2019
- 资助金额:
$ 57.96万 - 项目类别:
Applying statistical learning tools to personalize cardiovascular treatment
应用统计学习工具进行个性化心血管治疗
- 批准号:
10356901 - 财政年份:2019
- 资助金额:
$ 57.96万 - 项目类别:
Applying statistical learning tools to personalize cardiovascular treatment
应用统计学习工具进行个性化心血管治疗
- 批准号:
10113447 - 财政年份:2019
- 资助金额:
$ 57.96万 - 项目类别:
Deep Learning for Pulmonary Embolism Imaging Decision Support: A Multi-institutional Collaboration
肺栓塞成像决策支持的深度学习:多机构合作
- 批准号:
10165820 - 财政年份:2018
- 资助金额:
$ 57.96万 - 项目类别:
Methods for generalized ontology terms enrichment analysis
广义本体术语富集分析方法
- 批准号:
8909186 - 财政年份:2013
- 资助金额:
$ 57.96万 - 项目类别:
Methods for generalized ontology terms enrichment analysis
广义本体术语富集分析方法
- 批准号:
8729007 - 财政年份:2013
- 资助金额:
$ 57.96万 - 项目类别:
Methods for generalized ontology terms enrichment analysis
广义本体术语富集分析方法
- 批准号:
9128737 - 财政年份:2013
- 资助金额:
$ 57.96万 - 项目类别:
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 57.96万 - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
$ 57.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
$ 57.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
$ 57.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
$ 57.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
$ 57.96万 - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 57.96万 - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
$ 57.96万 - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
$ 57.96万 - 项目类别:
Downsides of downhill: The adverse effects of head vibration associated with downhill mountain biking on visuomotor and cognitive function
速降的缺点:与速降山地自行车相关的头部振动对视觉运动和认知功能的不利影响
- 批准号:
2706416 - 财政年份:2022
- 资助金额:
$ 57.96万 - 项目类别:
Studentship














{{item.name}}会员




