Methods for generalized ontology terms enrichment analysis
广义本体术语富集分析方法
基本信息
- 批准号:8909186
- 负责人:
- 金额:$ 61.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptionAdverse eventAgingBioinformaticsBiologicalBiological ProcessBlood Coagulation DisordersBurkitt LymphomaCalculiCessation of lifeClinicalClinical ResearchCockayne SyndromeComorbidityComputerized Medical RecordCustomDataData SetData SourcesDependencyDetectionDiseaseDrug usageElectronic Health RecordEtiologyGene ExpressionGene Expression ProfilingGenesGenomicsGoalsHospitalsIncidenceLabelLearningLength of StayLettersLinkLiteratureMethodologyMethodsMolecularMutationOntologyOutputPatientsPatternPharmaceutical PreparationsPlant LeavesProteinsQuality of CareResearch PersonnelRheumatoid ArthritisRothmund-Thomson syndromeSafetyScientistSignal TransductionSiteSorting - Cell MovementSourceStatistical MethodsSystematized Nomenclature of MedicineTextTissue MicroarrayWerner SyndromeWorkbasebiomedical ontologycohortdata mininggenome-wideglycosylationhealth recordhigh throughput analysisimprovedinnovationinsightinterestnovel
项目摘要
DESCRIPTION (provided by applicant):
The analysis of high-throughput data such as gene-expression assays usually results in a long list of "significant genes." One commonly used method to gain insight into the biological significance of alterations in gene expression levels is to determine whether the Gene Ontology (GO) terms about specific biological processes, molecular functions, or cellular components are over- or under-represented in the annotations of the gene sets generated as the output of the statistical analysis. This analysis method often referred to as "enrichment analysis," can be used to summarize and profile a gene-set, as well as other genome scale data.
While the GO has been the principal focus for enrichment analysis, we can carry out the same sort of profiling using any ontology available in the biomedical domain. We can perform enrichment analysis using disease ontologies - such as SNOMED-CT. For example, by annotating known protein mutations with disease terms, Mort et al. identified a class of diseases - blood coagulation disorders - that are associated with a significant depletion in substitutions a O-linked glycosylation sites. We can apply the enrichment analysis methodology to other datasets of interest - such as patient cohorts. For example, enrichment analysis might detect specific co-morbidities that have an increased incidence in rheumatoid arthritis patients - a topic
of recent discussion in the literature and considered essential to provide high quality care. We can also ask translational questions; for example, by identifying other disease associations for the genes involved in a certain disease of interest we can gain insight into how the causation of seemingly unrelated diseases might be related, e.g., Werner's syndrome, Cockayne syndrome, Burkitt's lymphoma, and Rothmund-Thomson Syndrome are all related by the fact that they share the same underlying gene related to aging.
Despite widespread adoption, GO-based enrichment analysis has intrinsic drawbacks. Our goal is to develop and apply general enrichment analysis methods - that can use any biomedical ontology - to profile diverse datasets, such as patient cohorts from electronic medical records and sets of genes deemed significant in genomic analyses. We propose to address some of the key shortcomings of the current enrichment-analysis methods, to expand significantly the ontologies that are used for such analyses, and to apply enrichment analysis on novel data sources for asking translational questions. The hypothesis spanning all our aims is that if we are successful, enrichment analysis - a widely used analysis approach by bioinformatics scientists - will be possible with more than just the GO and the method will be extended to ask clinical questions.
描述(由申请人提供):
对高通量数据的分析,如基因表达分析,通常会产生一长串“重要基因”。“一种常用的方法来深入了解基因表达水平变化的生物学意义,是确定基因本体论(GO)关于特定生物学过程,分子功能或细胞成分的术语是否在作为统计分析的输出生成的基因集的注释中过度或不足。这种分析方法通常被称为“富集分析”,可用于总结和分析基因组以及其他基因组规模数据。
虽然GO一直是富集分析的主要焦点,但我们可以使用生物医学领域中可用的任何本体进行相同类型的分析。我们可以使用疾病本体(如SNOMED-CT)进行富集分析。例如,通过用疾病术语注释已知的蛋白质突变,Mort等人鉴定了一类疾病-凝血障碍-其与0-连接的糖基化位点的取代中的显著消耗相关。我们可以将富集分析方法应用于其他感兴趣的数据集-例如患者队列。例如,富集分析可以检测在类风湿性关节炎患者中发病率增加的特定共病-一个主题
最近在文献中的讨论,并认为是必不可少的,以提供高质量的护理。我们还可以提出翻译问题;例如,通过确定与某种感兴趣的疾病有关的基因的其他疾病关联,我们可以深入了解看似无关的疾病的因果关系可能是如何相关的,例如,沃纳综合征、科凯恩综合征、伯基特淋巴瘤和罗斯蒙-汤姆森综合征都是由于它们共享与衰老相关的相同潜在基因而相关的。
尽管被广泛采用,但基于GO的富集分析具有固有的缺点。我们的目标是开发和应用通用富集分析方法-可以使用任何生物医学本体-来分析不同的数据集,例如来自电子医疗记录的患者队列和在基因组分析中被认为重要的基因组。我们建议解决目前的富集分析方法的一些关键缺点,显着扩展用于这种分析的本体,并应用富集分析新的数据源,以询问翻译问题。涵盖我们所有目标的假设是,如果我们成功,富集分析-生物信息学科学家广泛使用的分析方法-将不仅仅是GO,而且该方法将扩展到询问临床问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NIGAM H SHAH其他文献
NIGAM H SHAH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NIGAM H SHAH', 18)}}的其他基金
Applying statistical learning tools to personalize cardiovascular treatment
应用统计学习工具进行个性化心血管治疗
- 批准号:
9900852 - 财政年份:2019
- 资助金额:
$ 61.99万 - 项目类别:
Applying statistical learning tools to personalize cardiovascular treatment
应用统计学习工具进行个性化心血管治疗
- 批准号:
10356901 - 财政年份:2019
- 资助金额:
$ 61.99万 - 项目类别:
Applying statistical learning tools to personalize cardiovascular treatment
应用统计学习工具进行个性化心血管治疗
- 批准号:
10113447 - 财政年份:2019
- 资助金额:
$ 61.99万 - 项目类别:
Deep Learning for Pulmonary Embolism Imaging Decision Support: A Multi-institutional Collaboration
肺栓塞成像决策支持的深度学习:多机构合作
- 批准号:
10165820 - 财政年份:2018
- 资助金额:
$ 61.99万 - 项目类别:
Methods for generalized ontology terms enrichment analysis
广义本体术语富集分析方法
- 批准号:
8729007 - 财政年份:2013
- 资助金额:
$ 61.99万 - 项目类别:
Methods for generalized ontology terms enrichment analysis
广义本体术语富集分析方法
- 批准号:
9128737 - 财政年份:2013
- 资助金额:
$ 61.99万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 61.99万 - 项目类别:
Research Grant