Applying statistical learning tools to personalize cardiovascular treatment
应用统计学习工具进行个性化心血管治疗
基本信息
- 批准号:10113447
- 负责人:
- 金额:$ 73.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmericanAnticoagulantsAreaAsiansAtrial FibrillationBenefits and RisksBlood GlucoseBlood PressureCardiovascular DiseasesCardiovascular systemChronic Kidney FailureCodeCohort StudiesComplexDataData SetDiabetes MellitusDisease OutcomeFastingGlucoseGuidelinesIndividualLiteratureLongitudinal cohortMetabolismMethodsModelingMorbidity - disease rateOralParticipantPatientsPerformancePharmaceutical PreparationsPopulation SizesPreventiveRandomized Controlled TrialsReadingResearchResearch PersonnelRheumatoid ArthritisRiskRisk EstimateRisk ReductionSample SizeSerious Adverse EventSodiumStandardizationSubgroupTestingThromboplastinVariantWagesWorkadverse event riskbiomedical scientistcardiovascular disorder riskcardiovascular disorder therapyclinical carecomorbiditydata repositoryeditorialfasting glucosehealth dataimprovedindividual patientinhibitor/antagonistinnovationlearning strategynovelopen sourceopen source tooloptimal treatmentspersonalized medicinepublic health relevancerandomized trialrisk stratificationstatistical learningstroke risksymportertooltool developmenttreatment effect
项目摘要
Abstract
Cardiovascular disease (CVD) treatment is often guided by risk stratification tools (to decide who to treat), and
randomized controlled trials (to decide which treatments to select). Prior CVD research reveals two major
obstacles to improving our treatment approach: (i) longitudinal cohort data are unavailable for recalibrating risk
stratification tools for local-area estimation (by zip code), or for people with major CVD-promoting
comorbidities (e.g., chronic kidney disease); and (ii) the average treatment effect in randomized trials can be
highly erroneous when projected onto individuals that vary from the ‘average’ participant in a trial. CVD risk-
stratification and treatment effect estimation can be improved and personalized if we overcome a critical barrier
to progress: correctly estimating risk and treatment effect from new, large participant data repositories, which
have greater population size and include patients with more co-morbid conditions than common cohort studies,
and which permit personalized risk/benefit prediction tool development from individual-level data. Our prior
studies show that we can critically advance the field by applying novel statistical learning methods to this data,
to address: (i) false-positives from multiple testing; (ii) the reliance on standard regressions that cannot account
for non-linear, complex interactions between factors; and (iii) identifying the optimal approach among many
alternative statistical learning methods. We propose to apply our work in these areas to (Aim 1) Develop CVD
risk stratification tools for patients with inadequate sample sizes in common cohort studies. We will enhance
CVD risk stratification to include local-area adjustment (by zip code) and major co-morbid conditions affecting
CVD risk (e.g., chronic kidney disease). We will additionally (Aim 2) develop personalized treatment effect
prediction tools to guide decisions for CVD therapies with high potential benefit and risk, for therapies where
individual participant data from trials are available. We have obtained the individual participant data from the large
randomized trials that reveal wide variations in CVD risk reduction and serious adverse event risk increase
from three drug classes: non-vitamin K antagonist oral anticoagulants, intensive blood pressure treatment, and
sodium-glucose co-transporter 2 inhibitors for diabetes. Our preliminary research shows that traditional
regression methods cannot distinguish which patients are most likely to benefit or be harmed by such therapies, but
our statistical learning methods can. Finally, we will (Aim 3) develop open-source tools to improve the ability of
researchers to choose an optimal statistical learning approach for their dataset and problem. While numerous
statistical learning methods have been proposed in the literature, a key problem for biomedical scientists
without access to RCT data is: which method should I use to estimate treatment effects from observational data?
Building on our innovative approach to identify the optimal inference method for observational data, we will
construct an open-source tool to compare methods, identifying which method most often results in optimal
treatment decisions that minimize error and maximize performance on standardized metrics.
摘要
心血管疾病(CVD)的治疗通常由风险分层工具指导(以决定治疗谁),以及
随机对照试验(以决定选择哪些治疗方法)。先前的心血管疾病研究揭示了两个主要的
改进我们的治疗方法的障碍:(1)无法获得重新校准风险的纵向队列数据
用于当地估计的分层工具(按邮政编码),或用于主要促进心血管疾病的人
合并症(如慢性肾脏疾病);和(2)随机试验的平均治疗效果可为
如果投射到不同于试验中“普通”参与者的个体身上,那就大错特错了。心血管疾病风险-
如果我们克服了关键障碍,分层和治疗效果评估可以得到改进和个性化
要取得进展:正确评估来自新的大型参与者数据存储库的风险和治疗效果,这
有更大的人口规模,并包括比普通队列研究更多合并疾病的患者,
并允许根据个人级别的数据开发个性化的风险/收益预测工具。我们的前辈
研究表明,我们可以通过对这些数据应用新的统计学习方法来关键地推动该领域的发展,
解决:(I)多次检测的假阳性;(Ii)依赖无法解释的标准回归
对于因素之间的非线性、复杂的相互作用;以及(Iii)在众多因素中确定最佳方法
可选的统计学习方法。我们建议将我们在这些领域的工作应用于(目标1)开发CVD
常见队列研究中样本量不足患者的风险分层工具。我们将加强
心血管疾病风险分层,包括当地调整(按邮政编码)和影响
心血管疾病风险(例如,慢性肾脏疾病)。我们还将(目标2)开发个性化治疗效果
预测工具,用于指导具有高潜在收益和高风险的心血管疾病治疗的决策,以及
试验中的个人参与者数据是可用的。我们已经从大量的参与者中获得了个人数据
显示心血管疾病风险降低和严重不良事件风险增加差异很大的随机试验
来自三类药物:非维生素K拮抗剂口服抗凝剂,强化血压治疗,以及
治疗糖尿病的钠-葡萄糖协同转运蛋白2抑制剂。我们的初步研究表明,传统的
回归方法无法区分哪些患者最有可能受益或受到此类疗法的伤害,但
我们的统计学习方法可以。最后,我们将(目标3)开发开源工具,以提高
研究人员为他们的数据集和问题选择一种最佳的统计学习方法。虽然数量众多
文献中提出了统计学习方法,这是生物医学科学家面临的一个关键问题
无法获得随机对照试验数据的问题是:我应该使用哪种方法来从观察数据中估计治疗效果?
在我们为观测数据确定最佳推断方法的创新方法的基础上,我们将
构建一个开源工具来比较各种方法,确定哪种方法最常产生最佳结果
在标准化指标上最大限度地减少错误和最大化性能的治疗决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NIGAM H SHAH其他文献
NIGAM H SHAH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NIGAM H SHAH', 18)}}的其他基金
Applying statistical learning tools to personalize cardiovascular treatment
应用统计学习工具进行个性化心血管治疗
- 批准号:
9900852 - 财政年份:2019
- 资助金额:
$ 73.9万 - 项目类别:
Applying statistical learning tools to personalize cardiovascular treatment
应用统计学习工具进行个性化心血管治疗
- 批准号:
10356901 - 财政年份:2019
- 资助金额:
$ 73.9万 - 项目类别:
Deep Learning for Pulmonary Embolism Imaging Decision Support: A Multi-institutional Collaboration
肺栓塞成像决策支持的深度学习:多机构合作
- 批准号:
10165820 - 财政年份:2018
- 资助金额:
$ 73.9万 - 项目类别:
Methods for generalized ontology terms enrichment analysis
广义本体术语富集分析方法
- 批准号:
8909186 - 财政年份:2013
- 资助金额:
$ 73.9万 - 项目类别:
Methods for generalized ontology terms enrichment analysis
广义本体术语富集分析方法
- 批准号:
8729007 - 财政年份:2013
- 资助金额:
$ 73.9万 - 项目类别:
Methods for generalized ontology terms enrichment analysis
广义本体术语富集分析方法
- 批准号:
9128737 - 财政年份:2013
- 资助金额:
$ 73.9万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 73.9万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 73.9万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 73.9万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 73.9万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 73.9万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 73.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 73.9万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 73.9万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 73.9万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 73.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists