Single Molecule Real Time Electronic Sequencing

单分子实时电子测序

基本信息

  • 批准号:
    8929279
  • 负责人:
  • 金额:
    $ 123.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-14 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Third-generation sequencing approaches are largely focusing on single-molecule strategies with the ability to achieve long read lengths. Single-molecule approaches require little or no sample preparation, saving time and reagent costs. They are more accurate since there is less chance of errors as no amplification is needed and there is no bias in molecular quantification. In addition, single-molecule techniques allow direct sequencing of mRNA, allowing understanding of post-transcription editing variations and copy-number studies. Ideally, single-molecule SBS can be massively-parallel and real-time, operating at synthesis rates as high as 1 msec for DNA polymerase, however complex optics required to collect photons efficiently make scaling of the platforms to high densities difficult. A promising route for overcoming the challenges to optical techniques is bioelectronic detection. The direct, real-time detection of this reaction product by electrical means represents a two-fold challenge. First, the minute amount of charge involved falls well below the noise floor for solid-state detection. Second, the presence of a high concentration of screening ions in physiological buffers greatly reduces the range and strength of electrostatic interactions. As a result, conventional electrical detection strategies, including impedance spectroscopy, field-effect detection and Faradaic reactions, lack sufficient sensitivity to detect single molecules. In this four-year effort, we develop a real-time, single-molecule sequencing approach based on the electrical detection of specifically engineered electrochemical tags that are attached to each of the four nucleotides. A base-specific electrochemical tag is released during the nucleotide incorporation; this tag is then activated through a phosphatase reaction to become redox active and is subsequently collected into a single molecule fingerprinting region (composed of four nanogap transducers). Redox cycling is used to produce an amplified signal for detection in the fingerprinting region. This approach to signal amplification is the electrical analog of fluorescen labels which see repeated excitation and emission under constant illumination to achieve detection gain. These nanogap transducers are integrated onto a CMOS integrated circuit in a highly multiplexed, parallel format. The proposed approach combines the advantages of single-molecule real time sequencing with a CMOS-compatible single molecule signal transduction platform and its attendant scalability benefits
描述(由申请人提供):第三代测序方法主要关注能够实现长读长的单分子策略。单分子方法需要很少或不需要样品制备,从而节省时间和试剂成本。它们更加准确,因为错误的可能性较小,因为不需要扩增并且分子定量中不存在偏差。此外,单分子技术可以直接对 mRNA 进行测序,从而可以了解转录后编辑变异和拷贝数研究。理想情况下,单分子 SBS 可以大规模并行和实时运行,DNA 聚合酶的合成速率高达 1 毫秒,但有效收集光子所需的复杂光学器件使得平台难以扩展到高密度。 一个有前途的 克服光学技术挑战的途径是生物电子检测。通过电学手段直接、实时检测这种反应产物面临着双重挑战。首先,所涉及的微量电荷远低于固态检测的本底噪声。其次,生理缓冲液中高浓度屏蔽离子的存在大大降低了静电相互作用的范围和强度。因此,传统的电检测策略,包括阻抗谱、场效应检测和法拉第反应,缺乏足够的灵敏度来检测单分子。 在这四年的努力中,我们开发了一种实时单分子测序方法,该方法基于对附着在四个核苷酸中的每一个上的专门设计的电化学标签的电检测。碱基特异性电化学标签在核苷酸掺入过程中被释放;然后,该标签通过磷酸酶反应被激活,变得具有氧化还原活性,并随后被收集到单分子指纹识别区域(由四个纳米间隙传感器组成)。氧化还原循环用于产生放大信号,用于指纹识别区域的检测。这种信号放大方法是荧光标记的电模拟,荧光标记在恒定照明下重复激发和发射,以实现检测增益。这些纳米间隙传感器以高度多路复用、并行的形式集成到 CMOS 集成电路上。所提出的方法结合了单分子实时测序的优点和 CMOS 兼容的单分子信号转导平台及其随之而来的可扩展性优势

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Redox cycling without reference electrodes.
无需参比电极的氧化还原循环。
  • DOI:
    10.1039/c4an01287a
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sarkar,Sahana;Mathwig,Klaus;Kang,Shuo;Nieuwenhuis,AbF;Lemay,SergeG
  • 通讯作者:
    Lemay,SergeG
Stochastic Electrical Detection of Single Ion-Gated Semiconducting Polymers.
单离子门控半导体聚合物的随机电学检测。
  • DOI:
    10.1002/adma.202307912
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nieuwenhuis,AbF;DuarteSánchez,DanielF;Cui,JinZ;Lemay,SergeG
  • 通讯作者:
    Lemay,SergeG
Electron Transfer Mediated by Surface-Tethered Redox Groups in Nanofluidic Devices.
  • DOI:
    10.1002/smll.201603268
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    T. Steentjes;S. Sarkar;P. Jonkheijm;S. Lemay;J. Huskens
  • 通讯作者:
    T. Steentjes;S. Sarkar;P. Jonkheijm;S. Lemay;J. Huskens
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Serge Guy Lemay其他文献

Serge Guy Lemay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Serge Guy Lemay', 18)}}的其他基金

Single Molecule Real Time Electronic Sequencing
单分子实时电子测序
  • 批准号:
    8545596
  • 财政年份:
    2012
  • 资助金额:
    $ 123.63万
  • 项目类别:

相似海外基金

Quantum chemical challenge to elucidate the functional mechanism of base sequence specificity deciding removal of the DNA damage
量子化学挑战阐明碱基序列特异性决定去除 DNA 损伤的功能机制
  • 批准号:
    19K22903
  • 财政年份:
    2019
  • 资助金额:
    $ 123.63万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Theoretical Study on Relation of Base sequence and Electronic Structures toward Elucidation of Mechanism of DNA Electric Conductivity.
碱基序列与电子结构关系的理论研究,阐明DNA导电机制。
  • 批准号:
    16K05666
  • 财政年份:
    2016
  • 资助金额:
    $ 123.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Prediction and control of base sequence recognition ability for nucleic acid binding proteins by using computer experiments.
利用计算机实验预测和控制核酸结合蛋白的碱基序列识别能力。
  • 批准号:
    14598001
  • 财政年份:
    2002
  • 资助金额:
    $ 123.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FLANKING BASE SEQUENCE ON MUTAGENICITY OF 8 OXOGUANINE
8 氧鸟嘌呤致突变性的侧翼碱基序列
  • 批准号:
    6362773
  • 财政年份:
    2001
  • 资助金额:
    $ 123.63万
  • 项目类别:
FLANKING BASE SEQUENCE ON MUTAGENICITY OF 8 OXOGUANINE
8 氧鸟嘌呤致突变性的侧翼碱基序列
  • 批准号:
    6137753
  • 财政年份:
    2000
  • 资助金额:
    $ 123.63万
  • 项目类别:
GROWTH HOROMON LOCALIZATION AND ITS BASE SEQUENCE IN BOVINE PANCREATIC
牛胰腺生长激素定位及其碱基序列
  • 批准号:
    10460134
  • 财政年份:
    1998
  • 资助金额:
    $ 123.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
DNA BASE SEQUENCE EFFECTS IN CHEMICAL CARCINOGENESIS
DNA 碱基序列在化学致癌作用中的作用
  • 批准号:
    2488608
  • 财政年份:
    1997
  • 资助金额:
    $ 123.63万
  • 项目类别:
DNA BASE SEQUENCE EFFECTS IN CHEMICAL CARCINOGENESIS
DNA 碱基序列在化学致癌作用中的作用
  • 批准号:
    6475917
  • 财政年份:
    1997
  • 资助金额:
    $ 123.63万
  • 项目类别:
DNA BASE SEQUENCE EFFECTS IN CHEMICAL CARCINOGENESIS
DNA 碱基序列在化学致癌作用中的作用
  • 批准号:
    6329024
  • 财政年份:
    1997
  • 资助金额:
    $ 123.63万
  • 项目类别:
DNA BASE SEQUENCE EFFECTS IN CHEMICAL CARCINOGENESIS
DNA 碱基序列在化学致癌作用中的作用
  • 批准号:
    6124462
  • 财政年份:
    1997
  • 资助金额:
    $ 123.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了