Toward Atomic-Accuracy Design of Functional RNAs

功能性 RNA 的原子精度设计

基本信息

  • 批准号:
    8982079
  • 负责人:
  • 金额:
    $ 5.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-12-01 至 2017-11-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): A new paradigm has emerged to utilize RNA-based molecular machines as sensors to regulate new gene networks and as therapeutics to treat diseases such as HIV and breast cancer. These biomolecular machines harness RNA's extraordinary ability to adopt complex 3D shapes, perform catalysis, and change shapes in response to cellular and viral molecules. Furthermore, RNA can be produced in large quantities using established synthesis and can be coupled to increasingly facile cellular delivery methods. Unfortunately, despite RNA's potential as a design medium, development of RNA-based therapeutics and sensors are significantly hindered by inaccurate models of RNA folding and design, necessitating time-consuming selection methods and trial-and-error refinement. To accelerate the generation of RNA-based technology, I have developed RNAMake, the first automated RNA 3D design toolkit. RNAMake utilizes RNA motifs, the building blocks of RNA 3D structure which, in a few cases, have been shown to be modular. I propose to resolve current barriers to automate the design of RNA-based therapeutics through the following aims: First exhaustively characterizing the modularity of all known motifs by testing them in 3D design problems to generate a curated database of highly modular building blocks, increasing the confidence in RNAMake's designs and second to demonstrate RNAMake's straightforward approach to developing a novel RNA-based sensors to detect mir129, mir212, mir21, and mir208a miRNAs which are critical indicators of hypertrophic cardiomyopathy (HCM). In both of these aims, I will evaluate success through using a combination of massively parallel SHAPE chemical mapping, selective crystallography (Jeffrey Kieft), FRET measurements (William Greenleaf) and cell culture based assays (Euan Ashley). This proposal is highly collaborative, bringing together experiments a wide variety of fields including Structural Biology, Genetics and Medicine. Successful completion of the aims set forth, will yield the first detailed characterizatin of motif modularity in a publically accessible database, the first automated platform for 3D design that can be used by any RNA engineering group, and high-profile illustrations of its use for biomedically relevant RNA-based machines. In addition this work will be pursued subsequently as the focal point of my faculty career.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Yesselman其他文献

Joseph Yesselman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Yesselman', 18)}}的其他基金

Next-generation biophysical models for RNA dynamics, ligand binding, and catalysis
RNA 动力学、配体结合和催化的下一代生物物理模型
  • 批准号:
    10501780
  • 财政年份:
    2022
  • 资助金额:
    $ 5.42万
  • 项目类别:
Next-generation biophysical models for RNA dynamics, ligand binding, and catalysis
RNA 动力学、配体结合和催化的下一代生物物理模型
  • 批准号:
    10686990
  • 财政年份:
    2022
  • 资助金额:
    $ 5.42万
  • 项目类别:

相似海外基金

REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
  • 批准号:
    2349179
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
  • 批准号:
    2349567
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
  • 批准号:
    23K10982
  • 财政年份:
    2023
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
  • 批准号:
    DGECR-2022-00401
  • 财政年份:
    2022
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Discovery Launch Supplement
Algorithm Design in Strategic and Uncertain Environments
战略和不确定环境中的算法设计
  • 批准号:
    RGPIN-2016-03885
  • 财政年份:
    2022
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Discovery Grants Program - Individual
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
  • 批准号:
    RGPIN-2022-04570
  • 财政年份:
    2022
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithm Design
算法设计
  • 批准号:
    CRC-2015-00122
  • 财政年份:
    2022
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Canada Research Chairs
Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
  • 批准号:
    22K17855
  • 财政年份:
    2022
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
  • 批准号:
    2210849
  • 财政年份:
    2022
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Continuing Grant
Spectral Techniques in Algorithm Design and Analysis
算法设计和分析中的谱技术
  • 批准号:
    RGPIN-2020-04385
  • 财政年份:
    2022
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了