CRCNS: Cytoskeletal Mechanisms of Dendrite Arbor Shape Development
CRCNS:树突乔木形状发育的细胞骨架机制
基本信息
- 批准号:9097814
- 负责人:
- 金额:$ 32.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-15 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAffectAfferent NeuronsAlgorithmsAnatomic ModelsBackBiologicalBiological ModelsBiophysical ProcessCharacteristicsCoalCollaborationsCollectionComplexComputer SimulationComputer Vision SystemsComputer softwareConfocal MicroscopyCytoskeletal ModelingCytoskeletonDataData SetDendritesDevelopmentDevelopmental BiologyDevelopmental ProcessDisciplineDrosophila genusDrosophila melanogasterElectrophysiology (science)ElementsF-ActinFutureGeneticGenetic StructuresGoalsGrowthGrowth and Development functionImageInternshipsK-12 studentKnowledgeLinkMapsMeasurementMeasuresMicrotubulesMinorityModelingMolecularMolecular BiologyMolecular GeneticsMolecular ModelsMorphologyNervous system structureNeuritesNeuroanatomyNeurobiologyNeuronsNeurosciencesNeurosciences ResearchPositioning AttributeProcessPropertyProteinsProtocols documentationResearchResearch PersonnelResolutionResourcesRoleSeriesShapesSignal TransductionStagingStatistical Data InterpretationStatistical ModelsStructureSynapsesSystemSystems BiologyTechniquesTechnologyTestingTimeTransgenic OrganismsTreesanalogbasecomputerized toolsdata sharingdevelopmental geneticsdevelopmental neurobiologydigitalfeedingfluorescence imaginggenetic manipulationgraduate studenthigh schoolin vivoinnovationinsightmolecular imagingmolecular modelingmorphometryneurogeneticsneuroinformaticsnext generationnovelopen sourcepost-doctoral trainingprogramsquantitative imagingreconstructionrelating to nervous systemresearch studyrole modelsimulationtoolundergraduate studentvirtual
项目摘要
DESCRIPTION (provided by applicant): Background: Dendritic arbor shape and functional properties emerge from the interaction of many complex developmental processes. It is now accepted that multiple local-level interactions of cytoskeleton elements direct the growth and development of the dendrite arbor. However, the specific mechanisms that control developmental acquisition of final functional dendritic properties are largely unknown. Addressing this fundamental question requires novel data driven systems-biology tools to study developmental and biophysical mechanisms in the same neuronal model. A tightly-knit collaboration between molecular genetics, quantitative morphometry, and mathematical simulation can for the first time enable large-scale studies capable of achieving holistic understanding of the mechanisms underlying emergent features of the arbor. Project Goals: The main neuroscientific goal of this project is to understand how multiple local interactions of cytoskeleton components during differentiation define mature dendritic arbor shape and its functional integrative properties, using Drosophila sensory neurons as a model. The technological goal of this project is to develop a novel investigative approach that integrates and
extends previously separate approaches from developmental biology & genetics, in vivo confocal imaging & electrophysiology, computer vision, and neuroanatomical modeling. Specific Aims: We propose 3 tightly integrated specific aims. Aim 1: use genetic manipulations and electrophysiological recordings to model the role of cytoskeletal organization and dynamics as a fundamental determinant of emergent dendrite arbor shape and function. Aim 2: Implement advanced 4D multi-parameter imaging protocols and automated algorithms to reconstruct the arbor, and quantify spatial and temporal associations among multiple sub-cellular components. Aim 3: using automated reconstructions & measurements from aim 2, statistically characterize the structural and cytoskeletal features of dendrite arbors, and stochastically simulate the growth and electrotonic properties of anatomically realistic virtual neuronal analogues. The data from aim 3 will feed back novel hypotheses to be tested by a subsequent repetition of the (aim 1 - aim 2 - aim 3) cycle. Approach: We will focus on a single model system - Drosophila dendritic arborization (da) sensory neurons. More specifically, we will investigate class I and class IV da neuron arborization based upon their radically distinct dendritic morphologies (simple vs. complex) and underlying cytoskeletal organizations. We will make fusion constructs of cytoskeleton components with spectrally distinct fluorescent proteins. These will be used in transgenic Drosophila in order to quantitatively measure the distribution of F-actin, microtubules,
and microtubule polarity within the dendrite arbor throughout its development in vivo using confocal multi-fluor imaging. The resulting images will be processed by automated quantitative computer vision algorithms that will accurately extract the topology of the dendritic arbor, and it changes over time. We will use the resulting maps in neuroanatomical stochastic simulations to establish the links between the emergent morphometrics of the dendrite and specific cytoskeleton features at various developmental stages. Intellectual Merit: From a neurogenetics perspective, this project will pioneer the use of cytoskeletal features as putative fundamental determinants in statistical neuroanatomical models. These determinants will be linked to morphological determinants. From a computational perspective, this project will advance the state of the art in automated algorithms for delineating neuroanatomy (and its morphological dynamics) by deploying core technologies for large-scale multi-parameter studies, and result in an effective interfacing of automated reconstruction and simulation technologies. With this innovation, model predictions can be tested by molecular biological techniques, and findings of statistical models can be used to inform molecular models of dendrite arbor development. Educational Impact: This project will result in a cross-disciplinary training of post-doctoral fellows, graduate students, undergraduate students and high school interns. It will result in practical insight on ways to conduct cutting-edge systems-level scientific research overcoming disciplinary boundaries and using best-available collaborative tools. The trainees from this program will be uniquely positioned to develop the broader field of imaging-driven integrative systems neurobiology. It will expose minority and K-12 students to a new world of trans-disciplinary research that is indicative of the future. Broader Impacts: The combined body of molecular, imaging, and computational tools and datasets from this research will be disseminated widely, and made available to a broad class of investigators for adoption in the study of other major neuroscience problems. This project will serve as a new model for computationally enabled neuroscience research that achieves a long-desired synergy between the wet lab and computation.
背景:树突乔木的形状和功能特性是许多复杂发育过程相互作用的结果。现在人们认为,细胞骨架元素的多种局部相互作用指导了树突乔木的生长和发育。然而,控制最终功能性树突特性发育获得的具体机制在很大程度上是未知的。解决这个基本问题需要新颖的数据驱动系统-生物学工具来研究相同神经元模型中的发育和生物物理机制。分子遗传学、定量形态计量学和数学模拟之间的紧密合作,首次使大规模研究能够全面了解乔木出现特征的机制。项目目标:本项目的主要神经科学目标是了解细胞骨架成分在分化过程中的多种局部相互作用如何定义成熟树突乔木形状及其功能整合特性,以果蝇感觉神经元为模型。这个项目的技术目标是开发一种新颖的调查方法,集成和
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel N Cox其他文献
Daniel N Cox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel N Cox', 18)}}的其他基金
Georgia State University Initiative for Maximizing Student Development
佐治亚州立大学最大化学生发展倡议
- 批准号:
9925272 - 财政年份:2016
- 资助金额:
$ 32.3万 - 项目类别:
CRCNS: Cytoskeletal Mechanisms of Dendrite Arbor Shape Development
CRCNS:树突乔木形状发育的细胞骨架机制
- 批准号:
8920676 - 财政年份:2013
- 资助金额:
$ 32.3万 - 项目类别:
CRCNS: Cytoskeletal Mechanisms of Dendrite Arbor Shape Development
CRCNS:树突乔木形状发育的细胞骨架机制
- 批准号:
8697162 - 财政年份:2013
- 资助金额:
$ 32.3万 - 项目类别:
CRCNS: Cytoskeletal Mechanisms of Dendrite Arbor Shape Development
CRCNS:树突乔木形状发育的细胞骨架机制
- 批准号:
9310382 - 财政年份:2013
- 资助金额:
$ 32.3万 - 项目类别:
CRCNS: Cytoskeletal Mechanisms of Dendrite Arbor Shape Development
CRCNS:树突乔木形状发育的细胞骨架机制
- 批准号:
8644396 - 财政年份:2013
- 资助金额:
$ 32.3万 - 项目类别:
Investigating the Molecular Bases of Class-Specific Dendrite Morphogenesis
研究类特异性树突形态发生的分子基础
- 批准号:
8433892 - 财政年份:2012
- 资助金额:
$ 32.3万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 32.3万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 32.3万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 32.3万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 32.3万 - 项目类别:
Standard Grant














{{item.name}}会员




