Large-scale Network Modeling for Brain Dynamics: Statistical Learning and Optimization
脑动力学大规模网络建模:统计学习和优化
基本信息
- 批准号:9170649
- 负责人:
- 金额:$ 43.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAffectiveAlgorithmsAmericanBehaviorBehavioralBrainBrain regionCognitiveCollaborationsCommunitiesComplexDataData AnalysesData ScienceData SetDependenceDimensionsEnsureEquationEventExperimental DesignsFunctional Magnetic Resonance ImagingFutureGoalsGraphHumanInvestigationJournalsLeadMachine LearningMental disordersMethodsModelingMotorNetwork-basedNeurobiologyNeurosciencesNeurosciences ResearchNon-linear ModelsNonlinear DynamicsPathway interactionsProcessPublishingScientistSeedsSpace ModelsStimulusSystemTechniquesTestingTherapeuticTimeValidationVariantbasebehavioral outcomebrain pathwaycognitive controlcohortcostdata modelingdesignflexibilityimprovedinformation modelinformation processinginsightlarge scale simulationmodel developmentnervous system disordernetwork modelsneural circuitneuroimagingneuromechanismnovelopen sourcerelating to nervous systemresearch studysimulationstatisticsstimulus processingtool
项目摘要
Summary
The human brain is a large, well-connected, and dynamic network. Using functional MRI data, modeling how
this network processes the stimulus information has yielded insight on some of the mechanisms of the brain.
However, the past efforts, including ours, on using small-scale models yielded limited understanding of how the
complete and dynamic neural system functions in task-related experiments. Such understanding cannot be
recovered from the data without substantial and collaborative efforts on model development. Towards this goal,
we formed a collaborative team from modelers to end-users, and we will develop large-scale methods for task
related fMRI (tfMRI), including event-related fMRI, to model whole-brain network dynamics responding to task
challenges. Using modern statistical learning principals and large-scale optimization algorithms, we will
develop novel methods to model nonlinear, spatial-temporal dependence in high dimensional data of fMRI,
stimuli, and behavior outcomes. We will primarily base our methods in the regularized, constrained graphical
model (GM) framework, a promising multivariate framework for inferring brain connectivity that has been
validated by simulation and anatomical studies. Using this framework, we will develop novel methods to
investigate, at a large scale, how changes in connectivity and activation are driven by task challenges and how
multiple brain pathways process stimulus information. We will perform comprehensive validation and
assessment of the newly developed methods, using both simulated and multiple tfMRI data from large cohorts.
Using the scale of modeling that previous approaches cannot readily address without substantial time penalties
and maybe also inaccuracies, our collaborative team will also use these methods to investigate various novel
questions and hypotheses concerning the neural basis for cognitive control as one of the use cases. We will
also develop publicly available, open source implementations for a broad range of use in the neuroimaging
community. These modeling efforts will lead to new insights on the networks of large-scale neural circuits, and
provide pharmacological targets that may be overlooked using small-scale models.
摘要
人类的大脑是一个庞大的、连接良好的、动态的网络。使用功能磁共振数据,模拟如何
这个处理刺激信息的网络对大脑的一些机制有了深入的了解。
然而,过去的努力,包括我们在内,在使用小规模模型方面产生了有限的理解
任务相关实验中完整和动态的神经系统功能。这样的理解不能
从数据中恢复,而不需要在模型开发方面进行实质性和协作性努力。为了实现这一目标,
我们组成了一个从建模师到最终用户的协作团队,我们将开发大规模的任务方法
相关功能磁共振成像(TfMRI),包括事件相关功能磁共振成像,用于模拟响应任务的全脑网络动力学
挑战。利用现代统计学习原理和大规模优化算法,我们将
开发新的方法对高维fMRI数据中的非线性、时空相关性进行建模,
刺激和行为结果。我们将主要将我们的方法建立在正则化的、受约束的图形基础上
模型(GM)框架,一个很有前途的多变量框架,用于推断大脑连接,已经
通过模拟和解剖学研究得到了验证。使用这个框架,我们将开发新的方法来
大规模调查任务挑战如何推动连接和激活方面的变化,以及如何
多条大脑通路处理刺激信息。我们将进行全面的验证和
对新开发的方法进行评估,使用来自大型队列的模拟和多个tfMRI数据。
使用以前的方法在没有大量时间惩罚的情况下不容易解决的建模规模
也许还有不准确的地方,我们的合作团队也会使用这些方法来调查各种小说
作为使用案例之一,关于认知控制的神经基础的问题和假设。我们会
还要为神经成像中的广泛使用开发公开可用的开放源码实现
社区。这些建模工作将导致对大规模神经电路网络的新见解,以及
提供使用小规模模型可能忽略的药理靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xi Luo其他文献
Xi Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xi Luo', 18)}}的其他基金
Large-scale Network Modeling for Brain Dynamics: Statistical Learning and Optimization
脑动力学大规模网络建模:统计学习和优化
- 批准号:
9360104 - 财政年份:2016
- 资助金额:
$ 43.01万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 43.01万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 43.01万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 43.01万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 43.01万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 43.01万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 43.01万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 43.01万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 43.01万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 43.01万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 43.01万 - 项目类别:
Research Grant