Large-scale Network Modeling for Brain Dynamics: Statistical Learning and Optimization
脑动力学大规模网络建模:统计学习和优化
基本信息
- 批准号:9360104
- 负责人:
- 金额:$ 39.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectiveAlgorithmsAmericanAnatomyBehaviorBehavioralBrainBrain regionCognitiveCollaborationsCommunitiesComplexComputational algorithmCustomDataData AnalysesData ScienceData SetDependenceDimensionsEnsureEquationEventExperimental DesignsFoundationsFunctional Magnetic Resonance ImagingFutureGoalsGraphHumanInvestigationJournalsMachine LearningMental disordersMethodsModelingModernizationMotorNeurobiologyNeurosciencesNeurosciences ResearchNon-linear ModelsNonlinear DynamicsPathway interactionsPharmacologyProcessPublishingScientistSeedsSpace ModelsStatistical ModelsStimulusSystemTechniquesTestingTherapeuticTimeValidationVariantanalytical toolbasebehavioral outcomebrain pathwaycognitive controlcohortcostdata modelingdesignexperimental studyflexibilityhigh dimensionalityimprovedinformation modelinformation processinginsightlarge scale simulationmodel developmentnervous system disordernetwork modelsneural circuitneuroimagingneuromechanismnovelopen sourcerelating to nervous systemsimulationstatisticstool
项目摘要
Summary
The human brain is a large, well-connected, and dynamic network. Using functional MRI data, modeling how
this network processes the stimulus information has yielded insight on some of the mechanisms of the brain.
However, the past efforts, including ours, on using small-scale models yielded limited understanding of how the
complete and dynamic neural system functions in task-related experiments. Such understanding cannot be
recovered from the data without substantial and collaborative efforts on model development. Towards this goal,
we formed a collaborative team from modelers to end-users, and we will develop large-scale methods for task
related fMRI (tfMRI), including event-related fMRI, to model whole-brain network dynamics responding to task
challenges. Using modern statistical learning principals and large-scale optimization algorithms, we will
develop novel methods to model nonlinear, spatial-temporal dependence in high dimensional data of fMRI,
stimuli, and behavior outcomes. We will primarily base our methods in the regularized, constrained graphical
model (GM) framework, a promising multivariate framework for inferring brain connectivity that has been
validated by simulation and anatomical studies. Using this framework, we will develop novel methods to
investigate, at a large scale, how changes in connectivity and activation are driven by task challenges and how
multiple brain pathways process stimulus information. We will perform comprehensive validation and
assessment of the newly developed methods, using both simulated and multiple tfMRI data from large cohorts.
Using the scale of modeling that previous approaches cannot readily address without substantial time penalties
and maybe also inaccuracies, our collaborative team will also use these methods to investigate various novel
questions and hypotheses concerning the neural basis for cognitive control as one of the use cases. We will
also develop publicly available, open source implementations for a broad range of use in the neuroimaging
community. These modeling efforts will lead to new insights on the networks of large-scale neural circuits, and
provide pharmacological targets that may be overlooked using small-scale models.
总结
人脑是一个庞大的、连接良好的、动态的网络。使用功能性MRI数据,
这个网络处理刺激信息,使我们对大脑的某些机制有了深入的了解。
然而,过去的努力,包括我们的努力,对使用小规模模型的理解有限,
在任务相关的实验中完整和动态的神经系统功能。这样的理解不能
从数据中恢复,而无需对模型开发进行大量的协作努力。为了实现这一目标,
我们组建了一个从建模人员到最终用户的协作团队,我们将开发大规模的任务方法
相关功能磁共振成像(tfMRI),包括事件相关功能磁共振成像,以模拟全脑网络动态响应任务
挑战使用现代统计学习原理和大规模优化算法,我们将
开发新的方法来模拟非线性,时空依赖的高维数据的功能磁共振成像,
刺激和行为结果。我们将主要基于我们的方法在正则化,约束图形
模型(GM)框架,一个有前途的多变量框架,用于推断大脑连接,
通过模拟和解剖学研究验证。使用这个框架,我们将开发新的方法,
大规模调查任务挑战如何驱动连接和激活的变化,以及
多条大脑通路处理刺激信息。我们将进行全面的验证,
评估新开发的方法,使用模拟和多个tfMRI数据从大型队列。
使用以前的方法在没有大量时间损失的情况下无法轻易解决的建模规模
也可能是不准确的,我们的合作团队也将使用这些方法来调查各种新的
关于认知控制的神经基础的问题和假设作为用例之一。我们将
我还开发了公开可用的开源实现,用于神经成像领域的广泛使用。
社区这些建模工作将导致对大规模神经电路网络的新见解,
提供了使用小规模模型可能被忽略的药理学靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xi Luo其他文献
Xi Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xi Luo', 18)}}的其他基金
Large-scale Network Modeling for Brain Dynamics: Statistical Learning and Optimization
脑动力学大规模网络建模:统计学习和优化
- 批准号:
9170649 - 财政年份:2016
- 资助金额:
$ 39.38万 - 项目类别:
相似海外基金
Affective Computing Models: from Facial Expression to Mind-Reading
情感计算模型:从面部表情到读心术
- 批准号:
EP/Y03726X/1 - 财政年份:2024
- 资助金额:
$ 39.38万 - 项目类别:
Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 39.38万 - 项目类别:
Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 39.38万 - 项目类别:
Standard Grant
Affective Computing Models: from Facial Expression to Mind-Reading ("ACMod")
情感计算模型:从面部表情到读心术(“ACMod”)
- 批准号:
EP/Z000025/1 - 财政年份:2024
- 资助金额:
$ 39.38万 - 项目类别:
Research Grant
Individual differences in affective processing and implications for animal welfare: a reaction norm approach
情感处理的个体差异及其对动物福利的影响:反应规范方法
- 批准号:
BB/X014673/1 - 财政年份:2024
- 资助金额:
$ 39.38万 - 项目类别:
Research Grant
Interface: Transplants, Aesthetics and Technology (Previously About Face: The affective and cultural history of face transplants)
界面:移植、美学和技术(之前关于面部:面部移植的情感和文化历史)
- 批准号:
MR/Y011627/1 - 财政年份:2024
- 资助金额:
$ 39.38万 - 项目类别:
Fellowship
Affective and Immaterial Labour in Latin(x) American Culture
拉丁美洲文化中的情感和非物质劳动
- 批准号:
AH/V015834/2 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Fellowship
Home/bodies: Exploring the affective experiences of people at home using scenographic practice and ecological thinking
家/身体:利用场景实践和生态思维探索人们在家中的情感体验
- 批准号:
2888014 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Studentship
Imagination under Racial Capitalism: the Affective Salience of Racialised and Gendered Tropes of 'Black excellence'
种族资本主义下的想象力:“黑人卓越”的种族化和性别化比喻的情感显着性
- 批准号:
2889627 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Studentship
Tracing the brain mechanisms of affective touch.
追踪情感触摸的大脑机制。
- 批准号:
23K19678 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Grant-in-Aid for Research Activity Start-up